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ABSTRACT

This study utilizes direct experimental techniques to analyze the
basic scattering mechanisms that are important to modern diffraction
theories. The efforts are intended to supplement and guide the
development of theoretical models by exploring parameter ranges and
configurations that are intuitive extensions of the cases handled by
current prediction techniques.

A broad program of experimental investigation of rigid three-
dimensional scatterers is presented. The thin prolate spheroid is used
as a basic model for scattering from smoothly curved bodies. Batffles,
cylinders, cones, and cone variants serve for an eramination of edges
and tips of various orders. In addition to standard pulse measurements
with gated receivers, some data are obtained by a holographic imaging
technique.

The results show that the backscattered pressure from smoothly
curved bodies is determined almost exclusively by specular effects, even
at wavelengths that are relatively large compared to the appropriate
dimensions of the scatterers. Small changes in or additions to the
smooth surface, however, modify both the amplitude and directivity of
the scattering. Evidence of surface fields very close to smoothly
curved scatterers is also observed. These phenomena can, in general, be
identified with Franz-type creeping waves. However, they appear to
depend only loosely on the shape of the scatterer’'s surface, and a
prominent wave-type effect 1is noted at the antipole. Other data show

that very small discontinuities in the shape of a model’s surface can be
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prominent scattering sources, while discontinuities in only the
surface’s slope or curvature scatter much less. The form of the edge on
a baffle 1is seen to be an important scattering parameter for finite
edges with thicknesses as small as a quarter of a wavelength.
Furthermore, moderate surface damping on a flat baffle appears to
significantly attenuate the diffracted field propagating at a grazing
angle along the baffle.

Finally, because of a weakness in the current 1literature, the
Freedman theory of echo formation is carefully derived, and 1its
predictions are compared with applicable experimental results. The
technique is found to be an exact (i.e., not asymptotic) variant of
physical optics that produces a reasonably good model of scattering from
baffles but that exhibits serious errors in cases involving three-

dimensional bodies.
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CHAPTER 1

INTRODUCTION

1.1 Background and Objective

Considerable effort has historically been expended to model the
diffraction of wave fields wusing asymptotic and approximate methods.
Over 130 references are cited in this report, and they represent only a
fracrion of the total number in the literature. However, due to the
complexity of the phenomena, fundamental questions remain to be solved.

Even the most respected diffraction theories exhibit some dramatic
failures 1in surprisingly simple cases. For example, the Freednan
(1962a, 1962b) theory provides a method for resolving backscattered
echos in time and space that has been considered important enough to be
included in Albers’ (1972, pp. 246~268) collection of benchmark papers
in underwater acoustics. However, the theory includes some questionable
mathematical developments that have not been critically examined, and
the few existing comparisons between prediction and experiment
(Dunsiger, 1968, 1970) are inconclusive at best. As a second example,
the Keller extended-geometrical prediction for backscattering from a
thin spheroid is incorrect by at least one order of magnitude for
reasons that are unresolved. This has led to a loss of confidence in
the otherwise successful geometrical methods. A final example concerns
Franz-type creeping waves. This surface-wave phenomenon attracted
considerable attention that apparently 1led to conclusive explanations
approximately 10 years ago. However, because creeping waves have been

observed so rarely, serious doubts about the concept have arisen.




The problems with modern diffraction theories illustrated by these
exanples can be traced to a common cause: insurficient xnowledge about
the basic physics of diffraction. Thus, while mathematical technigques
can be used to accurately model a given set of observed cnaracteristics,
misleading or nonphysical conclusions are frequently drawn when the
predictions are analytically extrapolated (i.e., with no additional
knowledge of the physics) to slightly different conditions. The
likelihood that a given analytic model will be improperly interpreted is
enhanced by the complexity of the required analytic techniques and the
tendency of professionals to restrict their interests to either
theoretical or experimental research. In any case, before one develops
a diffraction model, a clear understanding of the basic physical
phenomena (i.e., physical intuition) should first be established.

For this study, the urge tc develop new diffraction theories has
been avoided. Instead, the objective is to analyze the basic physical
phenomena on which existing theories are based. Thus, the present work
first identifies and then critically examines the problems and
assumptions of today’s dominant diffraction theories. The approach used
for this examination involves careful, physical observation of basic
experiments designed specifically to aid in the development of physical
intuition. The procedure 1is a form of experimental analysis in which
the results of simple experiments are used to formulate further
experiments in an iterative fashion wuntil an intuitive understanding of

the particular phenomenon is reached.

——



1.2 Scope of the Study

The first task of this study was to review the popular diffraction
theories in order to isolate points that needed further clarification.
This was accomplished primarily by an extensive literature review that
is summarized in Section 1.3. For the Freedman theory, however, a
detailed analysis of the derivation was required because such an
evaluation does not appear in the literature. That theoretical analysis
is presented in Chapter 2. The second and larger task was to devise and
perform a series of experiments that would serve as in%ormative test
cases for the problems and weaknesses identified in the first task. The
prolate spheroid served as a basic model for diffraction from smooth
surfaces. The effects examined include the origin and angular
dependence of the scattering components, the significance and nature of
the creeping waves, and the influence and interaction with small
obstructions on the smooth surface (Chapter 4). Other types of models
were used to examine both the directivity and frequency response of
edges and tips of various orders. These models included baffles,
cylinders, cones, and cone variants (Chapter 5). Finally, to complete
the analysis of the Freedman theory begun in Chapter 2, the cylinder and
cone data 1in Chapter 5 were compared with equivalent theoretical
predictions.

The experimental analysis has been limited to a subset ~f acoustic-
wave scattering (mostly backscattering) effects demonstrated by bodies
of convex geometry in an air wmedium. Thus, the scattered fields
observed are singly diffracted and scalar in nature, and all scattering

bodies are essentially rigid. Because of practical 1limitations,
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fartield conditions for diffraction effects could not be obtained. The
source and receiver were always far enough from the scatterer to assune
that any local, exponentially decaying fields had died out (i.e., in the
acoustic farfield). However, the wavefronts could not be considered as
planar, and differences in propagation-path losses between different
models or different parts of the same model occasionally had to be taken
into account.

Two different measurement techniques were used. Most of the
results are standard gated-pulse measurements, i.e., a transmitted tone
burst of finite length is scattered by a body and then measured during a
known time window with a gated receiver. The second measurement
technique is a long-wavelength imaging technique similar to standard
holography. In this technique, the monofrequency pressure field (either
pulsed or continﬁous) scattered by a body is measured at many points
within a large, rectangular aperture, and the originating field at the
surface of the scatterer is then reproduced by a numerical wave-
reconstruction process. Because the results of this new imaging
technique must be interpreted carefully, they are all presented
separately in Chapter 6 along with an explanation of the theoretical
basis for the technique and the required experimental equipment.

Some comments about the selection of experiments and presentation
of results are in order. First, because the goal of this study was to
understand rather than to verify hypotheses, each individual test was
preceded by a series of '"insight experiments." These experiments
involved such simple techniques as manually positioning a model and

associated microphone while concurrently observing the results on an
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oscilloscope (see Section 3.4). Then, configurations that looked
interesting were examined more closely, and data were recorded for
analysis and presentation. Many of the final results presenged in this
document were preceded by weeks or months of preliminary investigations.
Second, the individual data curves are presented in a form as close to
the original as possible. This has been done because the small
oscillations, asymmetries, etc., that occur in the data frequently
provide either insights into the phenomena or indications of the
confidence that should be accorded to the data. The frequency-response
plots could not be preserved in this form because they had to be
manually adjusted to compensate for the loudspeaker’s response. Third,
as a further interpretive aid, each plot contains a small figure
intended to describe unambiguously the configuration used in that
particular experiment. Thus, the results of this thesis have been
organized and presented to support both a broad reading to develop
insights and a more detailed examination of any cases of interest to the

particular reader.

1.3 Review of Related Work

Before the results of this work are discussed, it should be
informative to review from a broad perspective some of the major
theoretical and experimental developments in the study of diffraction.
The literature on the subject 1is too voluminous to permit a coamplete
review in this introduction; therefore, the description will be limited
to an outline of the past developments that were considered when

formulating the experiments for this study. For additional information,
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na jor works of a summary nature have been written bv Bowman, Senior, and
Uslenghi (1969); James (1976); YNew, Andrews, Brill, Sisler, and _berall
(1974); Skudrzyk (1971); and Uslenghi (1973).

The study of diffraction can be traced back to observations made
many centuries ago about the propagation of light and sound. Even the
formal study of this phenomenon was evident as early as the 17th century
when Huyghens proposed the famous principle of wavefront construction
that bears his name. As early as 1881, Rayleigh applied the classical
normal-mode solution to the scattering from an infinite c¢ylinder; in
1908, Mie applied the solution ro a sphere. Since then, mnuch progress
has been made toward improving both the applicability and numerical
suitability of various methods. The advent of radar and its attendant
problems in the period from 1940 to 1945 provided a significant boost to
the level of effort devoted to scattering problems, and this effort has
largely continued to the present day. Nevertheless, the fact that
scattering from very simple shapes still receives a lot of attention is

a good indication of the complexity of the subject.

1.3.1 Eigenfunction Method

Some of the earliest formal diffraction solutions were derived
using the method of eigenfunctions or normal modes. This method (as
applicable here) involves expressing the problem in a coordinate system
where the three-dimensional wave equation separates into three ordinary
differential equations, solving the three equations {ndependently for
the characteristic modes, and forming the solution as a sum of these

modes. As already mentioned, the solutions for the infinite cylinder
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and sphere were formulated very early by Rayleigh (1881l) and Mie {1903y,
respectively. Spence (1948) derived an equivalent expansion for a
circular aperture as a limiting case of the oblate spheroid, and he
later evaluated the eigenfunction solution for a prolate spheroid
(Spence & Granger, 1951). At about the same time, Horton and Karal
(1950) worked out the solution for a paraboloid of revolution. Shortly
thereafter, Siegel, Crispin, and Schensted (1955) derived the normal-
mode solution for the semi-infinite cone, while that for the elliptic
cylinder was not seriously studied until 1963 by Barakat.

An observation of the dates on which these eigenfunction solutions
were derived provides an indication of the relative bpenefits and
drawbacks of this method. The procedure is formally straightforward and
rigorous, but it is applicable only to bodies that are coordinate
surfaces in one of the eleven separable coordinate systems (only nine of
these are separable for vector problems). In addition, the separation
constants that are formed in the procedure appear simultaneously in more
than one of the '"independent" solutions for all but the rectangular,
circular-cylindrical, and spherical coordinate systems. This fact,
coupled with the relatively slow convergence of the resulting series,
severely limics the practicality of eigenfﬁnction solutions for
numerical analysis. The relative complexity and the series form of the
wave functions also make it difficult to draw physical conclusions about
the results without extensive numerical computations.

Despite the difficulties, numerical analysis of eigenfunction
solutions has provided much useful data where exact solutions were

required or other solutions were not available. For example, Hickling




(1958) used this procedure to show that the backscatter from similar-
sized bodies of various shapes (sphere, prclate spheroid, and circular
cylinder) is dependent on the body 3eometry even at relativelv low
frequencies. The advent of desk calculators and, later, computers was
responsible for making these results feasible although time consuming.
Hickling (1962, 1964) wused the same method to evaluate some of the
earliest results of scattering from an elastic sphere. These resulcs
included a very iateresting theoretical study of pulse scattering
derived by Fourier transforming the eigenfunction solution. Most of the
reliable results for scattering from the prolate spheroid are also based
on eigenfunction techniques applied either directly or through
asymptotic evaluation of the mode functions (Andebura & Ostashevskii,

1974; Kleshchev & Sheiba, 1970; Lauchle, 1975a, 1975b; Senior, 1960).

1.3.2 Watson Transformation

An interesting and numerically useful result can be obtained from
the eigenfunction solution when the Watson (1913) transformation |is
applied. This transformation involves representing the modal terms of
the solution as poles inside the contour of a complex integral, then
shifting the contour to produce a solution in terms of a new series of
poles that yields better convergence properties. Franz (1954) showed
that this transformation produces terms in the solutions for the sphere
and cylinder that can be 1interpreted as waves traveling around the
bodies on their surface: the "creeping waves'" (see also Deppermann &
Franz, 1954; Franz & Deppermann, 1952; Uberall, Doolittle, & McNicholas,

1966). This new wave phenomenon has received considerable attention in




the literature, and it is discussed in more detail in tais introduction
in conjunction with Keller’s geometrical diffraction theorv. The wWatson
transformation has been applied, with similar results, “a  the
eigenfunction solutions for the elliptic cvlinder (Leppington, 1967)
and, for one order of summation, to the prolate spheroid (Xleshchev,

1974).

1.3.3 Integral Solutions

In addition to the eigenfunction solution, another technique that
formally produces exact solutions is direct application of the well-
known Helmholtz-Huyghens radiation integral (see, for example, Skudrzyk,
1971, pp. 489-494). Utilization of this technique leads to an integral
equation that relates the wave amplitude at a field point to =zhe
amplitude and normal derivative of the wave field along any closed
boundary that envelopes the point. The method is rigorous, but it can
be solved directly only in very rare cases. Techniques for solving the
integral equation numerically by breaking the integral up into a finite
number of sums and solving the resulting system of equations on a
computer have been studied (see, for example, Copley, 1968; Schenck,
19¢8). However, this method is most important as the starting point for
many approximate, numerical methods, especially those that are concerned
with surface fields or currents on the body of a scatterer (see, for

example, Hong, 1967).
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1.3.4 Asymptotic or Approximate Solutions

Because the exact formulations of the diffraction problem are
generally not suitable for obtaining quantitative results at any bdut the
lowest kL values (where L is a characteristic length), considerable
effort has been devoted to determining approximate solutions to the
problemn. One of the most straightforward mwmethods uses normal-mode
solutions with one or more terms replaced by numerically simpler forms
that are analytically valid at designated limiting values of the
parameter. Other methods proposed exhibit considerable diversity and
ingenuity, but they have certain common features. The techniques often
begin with an exact formulation in either eigenfunction or integral
form. In addition, they may assume relationships based on heuristic or
formal representations of well-known solutions. For example, one often
sees the phase relationship in a solution assumed a priori to correspond
to geometric paths in an otherwise rigorous treatment in order to obtain
the solution in a form such as U(r) = exp(ikr) I(r) (see, for example,
Brown, 1966; Hong, 1967). Because of the necessarily strong ties to
known résults and methods, most of the asymptotic solutions given in the
literature apply to the same simple cases as do the more formal
solutions (although the practicality or applicable parameter range is
generally expanded). The heuristic assumptions sometimes wmake it
difficult to estimate convergence criteria and ranges of applicability.
Finally, it is not at all uncommon to find that different solutions are
required for different aspect angles, frequency ranges, shapes, etc. In
short, the asymptotic methods may require considerable 1ingenuity and

skill for their application to obtain a reliable prediction, but their




accuracy can be surprisingly good in certain, sometimes unpredictable,

cases.

1.3.5 Geometrical Optics

Perhaps the most obvious first approximation for short wavelengths
is classical geometrical optics (Born & Wolf, 1959, pp. 108-131). This
well-known method is based on the concept of rays with propagation
described by shortest-distance paths according to Fermat’s principle and
conservation of energy within tubes of rays (see Figur= 1l.l1). It is
very useful when dealing with the short wavelengths encountered in
optics, but its usefulness 1is more limited for acoustics and radar
applications where the size of the wavelengths encountered are of the

same order of magnitude as the scattering objects.

1.3.6 Lundeburg-Kline Expansion

Lundeburg and Kline (see Kline, 1951) developed an asymptotic—
series solution in powers of l/k in an attempt to assess the magnitude
of error 1involved in the geometrical-optics approximation. This
technique is especilally appreciated, because it includes the
geometrical-optics solution as its first term and goes on to provide a
formal, rigorous procedure for deriving additional terms in the
solution. Keller, Lewis, and Seckler (1956) applied this basic method
to a wide variety of scattering problems in a paper that is frequently
referenced for accurate representations of specular scattering
mechanisms. They noted, however, that even this simple expansion is

difficult and lengthy to apply in many applications. An interesting
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Figure 1.1

Ray tube of geometrical optics.

A caustic occurs at those
points where one or both of the radii of curvature of the
wavefront vanish.




13
result relating to this method was obtained by Darling and 3Senior
(1965). They found that the radius of convergence of this series
approximation for a thin spheroid is larger than that for the similar

sphere-—a result that is contrary to assumptions commonly made.

1.3.7 Kirchhoff Approximation

One of the earliest and most important examples of approximate
diffraction techniques 1is based on assumptions first proposed by
Kirchhoff in the late 19th century (see, for example, Skudrzvk, 1971,
pp. 517-519). According to Kirchhoff, the field behind an aperture in a
plane (shadowed side) can be computed by means of an integral over the
aperture only. It must be assumed that (1) the field and its normal
derivative vanish behind the screen, and that (2) the field and its
normal derivative in the aperture are both identical with those for the
undisturbed incident field at the location of the aperture. This
approach was later modified by Rubinowicz (1924) to represent the
diffracted field as a line integral over the edge of the aperture (see
Skudrzyk, Hayek, & Stuart, 1973). The Kirchhoff method can also be
formulated for scattering from three-dimensional bodies, where it is
known as physical optics. In the latter case,- each point on the
diffracting object 1is assumed to act as a small volume source in an
infinite plane baffle, where it scatters with a known reflection factor
into a space angle of 2m.

The applicability of the Kirchhoff-Rubinowicz method has been
studied fairly extensively. Theoretical analyses (Leitner, 1949;

Spence, 1949) and experimental analyses (Wiener, 1949) have both shown




14
that the field near the edge of an aperture differs considerably from
that assumed by Kirchhoff. However, they also show that the physical-
optics expressions work surprisingly well in their prediction of the
field at great distances from an aperture, although the accuracy is
degraded in some cases at angles away from the direct forward or
backward direction (Ross, 1966). The accuracy of the physical-optics
predictions for three-dimensional scatterers is more variable. Good
agreement has been reported for scattering from the tip of a semi-
infinite, electromagnetic cone (Siegel, Crispin, & Scensted, 1955) and
the curvature discontinuity of a cone-sphere (Senior, 1965), despite the
fact that the original assumptions are of questionable validity in these
cases. However, results from similar acoustic scatterers reported in
Chapter 5 exhibit much poorer agreement between theory and experiment.
In general, the Kirchhoff method is considered to be an improvement over
geometrical optics, and Leizer (1966) has reported some limited success
in attempting to formulate a procedure for suitably wmodifying
geometrical-optics results with physical-optics corrections. This
approximate method must be used judiciously, though, because it is known
to predict contributions from the shadow boundary in cases where none
have been observed with either exact-theoretical or experimental

procedures.

1.3.8 Freedman Method of Echo Formation

A modified form of the Kirchhoff method was used by Freedman
(1962a, 1962b) in a study of the shapes of backscattered acoustic

pulses, a problem that 1is very important for target identification.
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Freedman’s results show that an echo is composed of a number of discrete
"images'" of the incident pulse. Using an analysis with coincident
source/receiver transducers at the origin of the coordinates, an
individual image pulse is generated wherever there is a discontinuity
with respect to range in the solid angle subtended by the scattering
body at a given range. An approximate procedure for evaluating this
type of solution as a sum of discrete area segments was proposed by
Neubauer (1963), and the original procedure was wused by Gatkin,
Paramonova, and P’yanov (1972) to approximate the scattering by a rigid
spheroid. Freedman (1970a, 1970b, 1971, 1972, 197", later generalized
the basic technique to handle transient radiation problems.

The Freedman method is of particular interest because of its easily
evaluated results and its prediction of scattering mechanisms based on a
formal analytical procedure. However, it does not seem to have been
quantitatively analyzed to any significant extent in the literature
(see, however, Dunsiger, 1968, 1970). Thus, the method has received
further study in this thesis. The qualitative descriptions of scattered
pulse shapes provided by Freedman (1962a, 1962b, 1964) make interesting
reading, especially for those persons unfamiliar with the complex forms
encountered in experimental work. Similar analyses of echo shapes based
on exact theoretical studies (Hickling, 1962, 1964; Rudgers, 1969) and
experimental studies (for example, Barnard & McKinney, 196l; Hampton &

McKinney, 1961) have also been reported.
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1,3.9 Keller’'s Geometrical Theory of Diffraction

Perhaps the most promising and ingenious approach to the problem of

high-frequency asymptotic solutions for complex scattering objects was
developed by J. B. Keller in the mid-to-late 1950’s (Keller, 1956, 1957,
1958, 1962; Levy & Keller, 1959). 1In discussing this technique, it is
inportant to separate the method itself from the actual implementation
that is continually evolving. The method is based on two assumptions:
(1) wave-propagation properties at a given point are determined solely
by the properties of the medium and the structure of the field in an
arbitrarily small neighborhood of the point; and (2) all fields, no
matter how they were produced, must have the same local structure, i.e.,
that of a plane wave (Keller, 1962). Having made these assumptions, one
can construct a solution for any complex shape by first breaking the
scattering object 1into a sufficient number of simple structures whose
properties are known and then matching the field between regions. The
solution 1in the locality of the simple structures is obtained from
"canonical"” problems, which are defined as the simplest boundary-value
problems that have the same local properties (field, media, geometry) as
the given structure. Keller and his colleagues have tried to develop
this concept into a complete method that 1is both formal and rigorous
rather than heuristic.

Keller’s implementation of these assumptions is based directly on
the principles of geometrical optics with the addition of diffraction
rays. He defines three new laws associated with edge, vertex, and
grazing-surface diffraction. Thus, an incident ray striking an edge is

reflected in a manner similar to reflection from a plane but spreading
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in a complete arc around the edge to form a cone of rays (see Figure
l1.2a). A similar result is postulated to occur at a vertex, where rays
now spread in a complete spherical pattern (Figure 1.2b). Note that the
terms edge and vertex refer not only to appropriate discontinuities in a
surface or edge but also to discontinuities in their derivatives. The
last diffraction ray is a surface ray that forms whenever an incident
ray impinges tangent to the scatterer surface. It then propagates along
the surface, continually directing new rays into the medium in a
direction tangent to the current path (Figure 1.2¢). The ray paths
assumed for both the geometrical and diffracted rays are shortest paths
based on an extended concept of Fermat’s principle, with the addition of
certain specified phase discontinuities (for example, at a caustic).
The edge and vertex rays are subjected to a multiplicative diffraction
coefficient at their formation but are otherwise described by
geometrical optics. The surface rays are described by three parameters:
a multiplicative diffraction coefficient at the points of formation and
reradiation, an exponential attenuation factor accounting for loss of
energy due to reradiation, and a factor to account for spreading on the
surface. All of these coefficients are determined by comparison with an
appropriate canonical problem.

Several general conclusions can be drawn about Keller’s geometrical
theory of diffraction (GTD). One primary advantage is the fact that it
does not possess any case~limiting associations such as a requirement
for separation of variables. This gives GID the very important benefit
of being applicable to an object of any shape; however, in practice, the

separation from specific simple geometries is not complete because of
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Figure 1.2 Geometric description of the three new types of diffraction
rays proposed by Keller, including (a) edge rays, (b) vertex
rays, and (c) surface rays.
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the requirement for applicable canonical problems. Futhermore,
solutions have been derived only for relatively simple objects because
of the complicated geometrical relations that are required to model more
complex shapes. Confidence in the method is aided by the extensive
efforts of Keller and his colleagues to show that the GTD solutions
agree with the solutions of other formal methods in the asymptotic
limict. But, one must remember that some of this .greement is enforced
by the canonical construction process. (The determination of
coefficients by comparison with canonical problems is usually made in
the asymptotic limit.) In addition, although the nature of the method
implies greater accuracy as the wavelength decreases in proportion to
the scatterer size, the heuristic construction process, which gives the
method its versatility, also exhibits the absence of rigorous criteria
for error analysis as well as the lack of a formal application
procedure. Thus, one must have at his command a large catalog of
individual coefficients and 1local solutions, and one nust apply
considerable skill in constructing the total solution. Finally, the
complete method, as presently implemented, is based on geometrical
optics. This dependence brings along all the problems of the latter
method at caustics (Figure 1.l1) and shadow boundaries.

In addition to the general considerations listed previously, the
accuracy of geometrical-diffraction-theory solutions is heavily
inf luenced by the applicability of the canonical problems wused. The
construction procedure guarantees a match with the canonical proolems in
the asymptotic limit. Thus, the total solution can also be expected to

match in the asymptotic limit to at least the degree that the local-
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mechanism assumption is valid if the solution is derived with adequate
care and precisjion. However, the solution can be expected to be optimum
when the assumptions made about the propagation mechanisms correspond to
actual physical processes. This last conclusion should encourage
careful analytical and experimental consideration of the processes
involved.

The edge problem is probably the best understood of the Keller
canonical problems. The diffraction coefficients can be determined from
Sommerfeld’s exact solutions for the half-plane or wedge (see Keller,
1962). Alternately, if impedance boundary conditions are desired, the
wedge solution of Malyughinetz (1960) or the impedance-edge solution of
Kendig (1977) may be employed. Keller and Hansen (1965) have summarized
these results and compared them with some experimental results and with
other analytic formulations. This comparison generally confirms the
validity of the Keller edge solution--at least in those problems where
it has been utilized (see also Keller, 1961; Ross, 1966). The cone of
rays postulated to emanate from an edge has also been observed
experimentally (Senior & Uslenghi, 1972). Finally, higher-order
coefficients have been obtained for the edge at a discontinuity in
curvature (Albertsen & Christiansen, 1978; Senior, 1972; Weston, 1962,
1965), but these coefficients are based on canonical solutions that are
approximate rather than exact, as was the case for the previously
mentioned edge coefficients.

The canonical problems for corners and vertices are not nearly as
well developed as those for the edge. Kraus and Levine (1961) obtained

an eigenfunction solution for the elliptic cone that is capable of
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producing a solution of the quarter—plane problem, but no diffraction
coefficients have been derived. The results that are available for the
vertex problem are also limited. The semi-infinite cone problem has
been evaluated, for example, by Siegel, Crispin, and Schensted (19533).
However, most of the geometrical-diffraction-theory results in the
literature either treat the vertex coantribution as negligible in
comparison to more prominent ones (for example, scattering from the base
of a finite cone) or utilize a physical-optics approximation at the
vertex (Bechtel, 1965; Keller, 1960; Senior, 1965).

The surface rays postulated in the Keller geometrical theory of
diffraction were formulated based on the creeping waves of Franz (1954).
In this case, three characteristic parameters must be determined: the
diffraction coefficients, the attenuation factor, and the surface
spreading factor. In Keller’'s implementation, the diffraction
coefficients at formation and reradiation are assumed to be functionally
identical due to reciprocity, and both the diffraction and the
attenuation coefficients are assumed to depend to a first=-order
approximation solely on the surface radius of curvature along the
direction of propagation. Thus, these coefficients are obtained from
the two-dimensional cylinder problem (Keller, 1956; Levy & Keller,
1959). It is important to note that the exponential decay represented
by the attenuation coefficient is attributed to reradiation energy loss
(not surface damping), although the derivation of the appropriate
canonical solution does take the impedance of the surface into account.
Higher-order diffraction and attenuation coefficients, which also depend

on the first and second derivatives of the curvature and sometimes also




the curvature transverse to the propagation path, have been Jderived by
Franz and Klante (1959), Keller and Levy (1959), and Voltmer (1970).
The suriace spreading factor is determined trom geometrical
considerations rather than from a canonical solution because the
appropriate canonical solution fcr all problems solved up to this time
would be virtually identical with that of the original problem.

The properties attributed to the Keller surface rays and the
general notion of creeping waves have probably been the most
controversial aspects of the Keller theory, despite the fact that there
is some experimental evidence of <creeping waves (Harbold & Steinberg,
1969; Neubauer, 1968). This controversy has been aided by the fact that
Kouyoumjian, who has published extensively on the Keller method, wuses a
different definition of the Airy function than dves Keller in his
derivation of the surface-ray coefficients. A comparison between the
coefficients used by the two different researche:s 1is shown 1in Table
1.1, which was made available to the author by Dr. Francis H. Fenlon.
Keller provided GTD solutions involving surface rays for the sphere and
the cylinder (Levy & Keller, 1959) and for the spheroid (Levy & Keller,
1960), and he showed that they matched the eigenfunction solutions in
the asymptotic 1limit. However, a numerical evaluation of Keller's
results for thin spheroids (that uses the first-order surface-wave
coefficients) by New, Andrews, Brill, Eisler, and Uberall (1974)
indicates that these results are in error by at least one order of
magnitude at low and even mid frequencies. In addition, Leppington
(1967) found that successive terms representing creeping waves in the

Watson-transformed eigenfunction solution for an elliptic cylinder do
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not necessarily decrease as had previously been assumed. (They do
decrease for the circular cylinder.) Finally, studies of the surtace
fields on curved bodies such as spheroids by other asymptotic methods,
such as those of Chen and Pao (1977), Goodrich and Kazarinoff (1963),
and Kazarinoff and Ritt (19539), generally support the possible
interpretation of surface-wave effects on these bodies; but they further
indicate that Keller’s analytic description of surface rays may not
adequately describe the phenomenon. Kazarinoff and Ritt indicate that
surface~wave propagation throuvghout the body may depend to second order
on the radius of curvature at the irradiated tip for axial incidence--a
conclusion that would void the local-mechanism assumption of Keller.
Note that when elastic bodies are considered, an additional type of
creeping wave, much more prominent than the Franz-type wave, 1is found
traveling in the elastic surface (see Doolittle, McNicholas, & Uberall,
1967; Dragonette, 1973; Goodman, Bunney, & Marshall, 1967).

The last group of canonical s>lutions for the Keller theory to be
considered here result from the inaccurate representations given by
geometrical optics near caustics and shadow boundaries. Since
geometrical optics predicts an infinite field at a caustic, Kay and
Keller (1954) have derived a finite solution for a caustic point and
line; and Levy and Keller (1959) have shown how these results can be
applied as a canonical solution to problems utilizing the geometrical
theory of diffraction. The discontinuities predicted by geometrical
optics at shadow boundaries have been analyzed by Buchal and Keller
(1960) as a boundary-layer problem. A Dboundary layer is defined as a

thin layer 1in which a function varies rapidly with respect to a
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parameter (such as caustics and shadow boundaries). Buchal and Keller
showed how an asymptotic solution that is valid in the boundary layer
could be used to correct the field at surface edges. Brown (1966), Fock
(1965), and Ludwig (1969) have studied the corresponding problem for
convex bodies. In a somewhat more elegant approach, Kouyoumjian and
Pathak (1974) have used a more general canonical solution to derive
diffraction coefficients at edges involving Fresnel integrals. This
method, which is often called the uniform theory of diffraction, derives
additional terms that add to the geometrical-diffraction-theory solution
to control the problems of the latter solution in the boundary layer
(see also Lee, 1978). However, the problem of caustics in the field is
not aided by this method.

Without going into detail, it should be mentioned that the Keller
theory has been extended for use with elastic bodies (Keller, 1958) and
with bodies that can support surface waves (Keller & Karal, 1960; Karal
& Keller, 1964). 1In the latter case, complex rays are introduced. New
canonical solutions are also under constant development. For example,
Pathak and Kouyoumjian (1974) have derived coefficients to describe the

launching of surface rays from the edge of an aperture in a curved

surface.

1.3.10 uUfimtsev’s Method of Boundary Waves

The idea of constructing a solution from a number of canonical
solutions with an assumption of localized diffraction mechanisms is not
unique to Keller. At about the time of Keller’s proposals, Ufimtsev

(1958, 1969) proposed a similar technique based on physical optics. In
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his method, the surface field predicted by a Kirchhoff approach, which
is known to be in error near edges and shadow boundaries, 1is corrected
by the addition of a nonuniform edge component or 'boundary wave."
Then, the farfield solution is determined by integrating the surface
field. The boundary wave is derived using a canonical solution such as
that for a wedge or half-plane. Although a complete series of canonical
solutions is formally feasible, Ufimtsev has only derived relations for
the case of edges.

The Ufimtsev method has been compared with other methods by Knott
and Senior (1974), and Senior and Uslenghi (1971). They show that the
Ufimtsev method 1is correct only to first order for the strip and the
disk, but that its numerical estimates for these cases are reasonably
close to those obtained by Keller’s method. They also note that
Ufimtsev does not actually evaluate the surface terms; rather, he uses
their formation to comstruct an equivalent group of half-planes whose
scattering solutions are then summed. In general, the Ufimtsev method
has been in the shadow of the Keller method since its inception because
of its dependence on integral formulations and because it has not been
as extensively developed. Because physical optics offers an improvement
over geometrical optics, it would at first appear to hold more promise
than the Keller method. However, 1its strong association with the very
complex fields on the surface of a body (as opposed to those some
distance away) makes its practical implementation extremely complicated

and its solutions difficult to evaluate.




1.3.11 T-Matrix or Extended Boundary Condition

The final theoretical method to be considered is based on the
extended boundary condition formulated by Waterman for electromagnetics
(1965) and acoustics (1969). The method makes use of the Helmholtz
integral formula and expansions of the incident, scattered, and surface
fields in terms of orthogonal basis functions. The actual relationships
among the expansion coefficients are too complex to explain in detail
here. However, in general, two sets of equations are derived: (1) the
Helmholtz integral outside the scatterer is used to relate the
coefficients of the scattered wave to those for the surface fields; and
(2) the Helmholtz integral evaluated for a point inside the body, where
the field is everywhere zero, 1is used as an extended boundary condition
to relate the incident-wave coefficients to those for the surface-field
components. Finally, a transition (T) matrix that directly relates the
incident-wave and scattered-wave expansion coefficients is derived. The
Helmholtz integral evaluation inside the body 1is called the extended
boundary condition because the condition 1is forced throughout an entire
volume. The basic method has also been extended to cover scattering
from elastic bodies by V. V., Varadan (1978), V. V., Varadan and V. K.
Varadan (1979), and Varatharajulu and Pao (1976).

A numerical evaluation of the Waterman (T-matrix) method has been
performed by Bolomey and Wirgin (1974). Although it {s an integral
method, they show that the Waterman method is significantly more
efficient in a numerical semse than the direct integral methods
discussed in Section 1.3.3. The method is generally valid for all types

of scattering bodies, but it is currently restricted by computational
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complexity to low frequencies and to roughly spherical (i.e., not
elongated) bodies. In general, a judgment of the usefulness of this
relatively new method must await its further development. The heavy
reliance on matrix techniques makes it very difficult to draw physical
conclusions about the results of a T-matrix solution without extensive
numerical evaluation, but the method could prove to be extremely useful

in the modern computer age.

1.3.12 Experimental Work

Because the study reported in this thesis is primarily experimental
in nature, a review of past experimental results is of interest. An
overall historical trend in the use of experiment seems to be indicated.
Early work in wave propagation and diffraction depended very heavily on
experimental results to '"'show the way." Rayleigh (1945) made extensive
use of simple experiments to aid the development of his monumental work
on acoustics first published in 1894. Becknell and Coulson (1922) first
determined that the caustic 1in the shadow behind a disk 1is the evolute
(i.e., locus of the center of curvature) of the scattering edge by means
of diffraction experiments with visible light. As interests later
turned toward longer-wavelength effects in the acoustics and microwave
range, organized scientific development began to depend more heavily on
theoretical developments. While experimental data were still wused
directly for certain specialized applications, the developmental studies
began to use experiments primar{ily as direct confirmation of theoretical
results. The apparent transition in research methods seems to result

from the highly developed, complex theoretical methods that have been
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formulated. The resulting specialization of personnel in either theory
or experiment has made the cross fertilization of these two
complementary methods more difficult.

When examining the literature for experimental results, one {is
generally disappointed by the relatively small amount of data available
(or at least published in the open literature). The bodies that have
received the most attention are the simplest shapes: the sphere and the
cylinder. For examples in acoustics, Foxwell (1970) and Weiner (1947)
examined the field near the surface of rigid spheres and/or cylinders.
The scattering from elastic spheres has also received a lot of attention
(Freedman, 1964; Hampton & McKinney, 1961; Newbauer, Vogt, & Dragonette,
1974). 1In fact, because the analytical solution for a sphere is so well
understood, this body is frequently used as a calipbration standard for
other experiments.

Another shape that has received a fair amount of attention in
electromagnetics is the finite cone and the related come-sphere, the
latter because of its importance as a radar target. Wiener (1948)
included the cone among the bodies on which he performed surface
measurements. Hong and Borison (1968) and Keys and Primich (cited in
Keller, 1961) provided farfield scattering results for the cone. The
cone-sphere was examined, for example, by Blore (1963), Kennaugh and
Mof fatt (1962), and Senior (1965). In addition, the acoustic field of a
prolate spheroid, both on the surface (Blake & Wilson, 1977) and in the
farfield (Bayliss & Maestrello, 1978), was recently measured.

One interesting result in which experiment has played a major role

is the discovery of creeping-wave effects. Franz and Depperman (1952)
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were attempting to explain results of Limbach when they first postulated
the existence of creeping waves. Barnard and McKinney (1961) later
interpreted their measured results for elastic spheres in water in terms
of those creeping waves. However, Doolittle, McNicholas, and Uberall
(1967) showed that Barnard and ..:Kinney actually observed (and thus
discovered) Rayleigh-type creeping waves, which exist in an elastic
surface. Identification of Franz-type creeping waves was reported by
Harbold and Steinberg (1969) and Neubauer (1968), but a large degree of
doubt as to the validity of the Franz-wave assumptions still exists.

The techniques used in experimental scattering have remained
relatively static for many years. Virtually all measurements are made
in acoustic or microwave test ranges by irradiating objects with
continuous or pulsed wave fields and detecting the scattered result at
desired locations with appropriate receivers. The technique has been
extended somewhat for the determination of target shape (inverse
scattering) by recording the scattering of pulses in two or more
directions and mapping the time relationships in two dimensions (for
example, Dunsiger, 1968, 1970). In addition, Dardy, Bucarc, Schuetz,
and Dragonette (1977) have reported a technique whereby the frequency
response of a body is determined by Fourier transforming the scattering

from short pulses (see also Moore, 1974) in near real time.
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CHAPTER 2

FREEDMAN THEORY OF ECHO FORMATION

When acoustic waves are incident upon a body of given shape and
acoustic properties, complicated spatial distributions of both farfield
and surface pressure result. Much effort by many researchers has been
devoted to the development of new and refined techniques for predicting
these distributions to greater and greater precision and over wider
parameter ranges. However, when the wavelength is sufficiently small in
terms of the scattering-body dimensions and when the observation point
is sufficiently far from the scatterer, it 1is possible to make
assumptions that simplify the prediction techniques to a significant
degree. One appealingly simple method that attempts to capitalize on
this last fact is the Freedman (1962a, 1962b) theory of echo formation.
Unfortunately, wunlike other frequently referenced methods such as the
Keller theory, the Freedman theory has not been critically evaluated in
the literature--even though its derivation 1is based on a Taylor
expansion of questionable validity. Consequently, a complete analysis
of the Freedman method has been included here.

The Freedman technique utilizes a physical-optics approach based on
the Kirchhoff assumptions (modified for three-dimensional scattering) to
predict the backscattering from a rigid, convex body. In general, it
shares the advantages and limitations of the physical-optics approach,
although additional mathematical complications are introduced for bodies
whose shadow projected in the direction of the incident field takes the

form of an ellipse. However, the Freedman method is formulated in a
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manner that is more useful for physical interpretation of backscattering
results for both continuous waves and narrow-band pulses. The value and
appeal of this last benefit has attracted much attention to this method,
especially in the field of underwater acoustics. Unfortunately, results
of this study show that the physical interpretations provided by the
method are sometimes erroneous.

The derivation presented here generally follows that of Freedman
(1962a). However, certain complications, such as nonuniform
source/receiver directivities, have been omitted to prevent them from
clouding the interpretation of the results. Some additional remarks and
conclusions about the method and its results have also been included.
In the last part of this chapter, the Freedman method is applied to
several examples, including spheres, cylinders, finite baffles, cones,
and modified conmes. These examples are intended both to point out
important analytic features of the method and to show the computations
that have been used for comparison with experiment. Discussions of the
agreement between theory and experiment are found with the experimental

results in Chapter 5.

2.1 Derivation of the Basic Integral Expression

The general case to be considered 1is that of backscattering from a
rigid object insonified by a continuous, single-frequency source. The
geometry is shown in Figure 2.1. The transmitter/receiver pair acts as
a point element located at the origin of a spherical coordinate system
in an unbounded, nondissipative, homogeneous, isotropic, fluid medium.

The scattering body is assumed to be both rigid and convex. Its surface




SCATTERING BODY
® = s(r,0)

X'

Figure 2.1 Definition of the geometry for backscattering showing the
locations of the transducers and scatterer, a strip along

the scatterer between ranges r and r+dr, an area dS, and the
surface normal n.
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3a
is represented by an equation of the form o = S(r, <), which mayv be
multivalued. A surface element of area dS and outward normal n exists
at every point (r,3) on the body surface S.

Assuming that the scattering body 1is far enough from the
transmitter for the inverse-range law to hold, the pressure incideat on
an element of body surface dS at a distance r from the source is given
by

p, = Lexploin) (2.1)
Here k = 27/A is the wave number, A is the wavelength in the fluid
medium, and P is the strength of the source. A harmonic time dependence
of exp(iwt) has been suppressed. The particle velocity of the wave
incident at dS can be obtained from the corresponding pressure by the
relation (Skudrzyk, 1971, p. 280)

A

u= (koc

)Vp > (2.2)
where p i1s the density of the medium and c is the sound velocity in the
medium. (Note the use of an underscore to represent a vector quantity,)
Substituting Equation 2.l into Equation 2.2, one obtains for the
velocity incident on dS in the directicn of propagation

P

6 = GO0 - &) (2.3)

Since the scattering body is rigid, the component of the net velocity

normal to the surface must be zero on the surface. Thus, each element
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dS must act as a source of volume velocity -uicos'JdS to <cancel the
normal component of the incident velocity.

At this point, the Kirchhoff approximations are introduced.
Kirchhoff assumes that each area element 1in the illuminated region acts
as if it were 1imbedded in an infinite plane baffle, thus radiating
equally over a solid angle of 2m. In addition, the field in the
shadowed region is assumed to be identically zero. The pressure dpS
back at the receiver due to the radiation of a source element of volume

velocity -uiCOS\DdS is given by (see Skudrzyk, 1971, p. 348)

dps = (:%g)(l - (é; )(SEE&:%EEEL)COS i dSs . (2.4)
r

If one assumes that the range is large enough for terms of order (1/r3)
to be neglected compared to those of order (1/c2), this equation reduces

to

dp_ = (%Ii) (expl=izkr)y gy 45 . (2.3)

2
r

The total pressure pg at the receiver due to backscattering from the

body is obtained by integration over the illuminated surface:

P

s = (:%go IJ (EEES:%EEE)JCOS y ds . (2.6)

S r

This 1is just the Kirchhoff integral expression for the backscattering
from a rigid body. The same relation can be derived by more formal

means, as is shown in Appendix A.
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In order to further evaluate the Kirchhoff expression (Zquation

2.6), the projected area cos pdS can be specified in the form
dS cos y = F(r,3)drdse . 2.7)

This ailows Equation 2.6 to be written as

P, = (i)j (exp(—iZkr)j( B Nvaeiar 2.3)

0 r r

where the inner integral is applied over the range of J appropriate for
each constant value of r. The kernel of the 9 integral is noted to be
the differential element of solid angle (see Spiegel, 1959, PP-
124-125). The total solid angle subtended by the portion of the

scattering body within range r is thus given by

W(r)=[ {I (—E%)de}dr . (2.9)

The derivative with respect to range of W(r) matches the inner integral

of Equation 2.8, allowing that equation to be written in the form

oo

-ip D)) exp (-1 >
Py = (5 j (S exp(-i2kr)dr (2.10)
o v

[assuming that W(r) is continuous]. Thus, the Kirchhoff scattering
expression can be formulated in terms of the derivative of the solid
angle subtended by the portions of the scattering body within range r.

Note that the integral now takes the form of a Fourier transform. Note
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- . . i
also that, as r becomes large enough for the variation ia (l,/r<) over
the extent of the scattering body to be neglected, #(r) may be replaced

by

W(r) = é_(';"" . 2.11)

2l

m

Here A(r) is the projection toward the transducers of that part of the

scattering body within range r, and rm is some mean range to the body.

2.2 Integral Evaluation by Discontinuities in W(r)

The derivation of the scattering equation up to this point has
differed little from common implementations of the Kirchhoff wmethod.
However, Freedman makes a significant departure from earlier practice by
evaluating the modified Kirchhoff integral (Equaticn 2.10) in terms of
the discontinuities in W(r) and its derivatives with respect to range.
The effect of this last procedure is to divide the integral into a
series of contributions that can be related to various physical features
of the scatterer.

Let r1 denote the range to the nearest part of the scattering body,
and let rf denote the range to the furthest part 9f the body in the
illuminated zone. In general, the total solid angle W(r) will be zero

for ranges up to r will increase continuously from range r until it

1

and then will remain at that maximum

1’
reaches a maximum at range rf,
value out to range infinity. Consider, however, the example illustrated

in Figure 2.2. In this case, a portion of the scatterer surface at

range rg is parallel to the incident wavefront, causing a discontinuous
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jump in W(r) at that point. Equation 2.10 can be evaluated for this
example if the function W(r) 1s continuous over the remaining portions
of the range (or else further subdivision must take place) and if the
derivative dW(r)/dr is modified to account for the discontinuity.

Still referring to the example in Figure 2.2, let W_(r) be a
continuocus quantity that represents W(r) from range zero to range rg.
The continuity at rg means that the single-sided limit of the function
W _(r) as r approaches rg exists and that the value assigned to the
function at rg is this limit. Similarly, let w+(r) be a continuous
quantity that represents W(r) from range rg out to range infinity.

Finally, let the size of the discontinuity at rg be denoted by D, where

D=W_(r) - W () . (2.12)

The function W(r) can be represented as

W_(r) 0 <r < rg
W(r) = - DH(r - rg) , (2.13)

LW+(r) + D rg < r <™
where H(r-rg) represents a Heaviside step function. Since the result

will eventually be integrated, one can differeatiate Equation 2.13 to

cbtain

dW_(r)
& 0T Te
dggrg - -D&(r - r ) . (2.14)
r dw, (r) 8
~dr g T c”

Here 6(r~rg) is a Dirac delta function. If Equation 2.l4 is substituted
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into Equation 2.10, three integrals result: the two continuous
integrals on either side of rg and the delta function contribution at

rg. The latter contribution is just

J D&(r - rg)exp(-iZkr)dr =D exp(-iZkrg) . (2.13)
0

the value of the integral

Since dW(r)/dr is zero for r < r) and r > rg,

over the full range becomes

) rrg dw_(r)
W (r
[d—‘;fr—)) exp (-i2kr)dr = (57— exp(-i2kr)dr
0 Ty
Tt
dw+(r)
+ (——E;——)exp(-iZkr)dr
r
g

- (w_(rg) + W+(rg))exp(—i2krg)

(2.186)

These results can be extended to include cases where more than one
discontinuity exists in W(r) by further dividing the range iato
subdivisions between each discontinuity.

The preceding analysis shows how the modified Kirchhoff scattering
integral (Equation 2.10) 1is related to discontinuities in the solid
angle W(r) subtended by the scattering body. However, the solutions

over the continuous ranges of the function are still 1in integral form.
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To evaluate these continuous integrals, the indefinite integral or
antiderivative given by

I(r) = J( (B exp (-12kr) dr (2.17)

nmust be examined. If the integrand is continuous over the range of

integration r1 <r«< rf, then the wvalue of the integral can be
determined solely by the antiderivatives at the end points. In this
case,
Tt
(%El)exp(-izkr)dr = I(r,) - 1) (2.18)
1

Using this notation and the range subdivision of Equation 2.16, Equation

2.10 can be written in the form

£
- &2 ({1 () - 1,.(c))
ps A -'g +' g
g=1
- [W_(rg) - W+(rg))exp(—i2krg)} , (2.19)

where I_(rg) and I+(rg) refer to the antiderivatives of the continuous
integrals involving dW_(r)/dr and dw+(t)/dr. This relation 1is valid

when the summation includes r , r and range points 1in between them

1 £’
where discontinuities in W(r) occur. [Recall that I_(rl) = I+(rf) 2 Q.]

However, 1in order to support the next step in the Freedman procedure,
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the summation 1is extended to include points where discontinuities in
derivatives of W(r) occur. This extension does not affect the result of
Equation 2.19, and it will be used in the following discussion to
express the value of ps solely in terms of discontinuities in both W(r)
and its derivatives.

A further evaluation of the indefinite integral (Equation 2.17) can

be performed by noting that it is of the form

I(r) = J f(r)exp(-i2kr)dr . (2.20)
If this equation is integrated iteratively by parts m times, the
solution becomes
m
. -i.n_(n-1) -
I(R) = -exp(-i2kR) (52) £ (R) + Rm s (2.21)
n=1
where
R = (126)7" J £ (r)exp(-i2kr)dr (2.22)
R
and

(m)
¢ (m) (r) = (d
dr

VE(r) . (2.23)

Finally, by replacing £(r) with its actual form from the modified
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Kirchhoff integral (Equation 2.10), cne obtains

m

I(R) = -exp(~i2kR) 2 (——=

n 1

w(n) (R))
(121)"

+ R . (
m

(§%]
to
i~
~

In his derivation, Freedman draws the tempting additional
conclusion that Equation 2.24 can be treated as an asymptotic, series
representation of I(r) for large values of kr by letting m tend to
infinity. This would require that

(Eiﬁm J lw(m+l)(r)|dr -0 as m~+® . (2.25)

R

However, there is no justification for making this assumption.
Furthermore, as is shown later for the example of a circular disk, this
series representation fails completely with many useful scatterer shapes
because of the unbounded behavior of dW(r)/dr and its derivatives at
crucial ranges. Since the disk example can be solved by direct
application of the Kirchhoff integral (in the form of Equation 2.6), the
difficulty clearly lies with the solid-angle interpretation of the
Freedman method. Having exprassed that conclusion for the general case,
it should also be mentioned that there are useful examples where the
integration~by-parts procedure terminates naturally after a few terms
(the sphere, for example). Thus, the Freedman technique is useful if
its application 1is restricted to problems where the series of
integrations does terminate. From that point of view, this procedure
should be considered a formal solution technique for the Kirchhoff

integral expression rather than an asymptotic approximation of it.
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Keeping the reservations mentioned in the preceding paragraph in
mind, substitution of the integration-by-parts expression of Equation

2.24 into one term of Equation 2.19 yields

(1.(rp) - 1)) = (W.(r) - W (r))exp(~i2kz )

' SR CY

= -exp(-iZkrg) :E: {

n=20

() - W, V)

b, (2.26)
(12x)"

Note that N 1is large enough to guarantee that higher-order derivatives
of wr(t) are identically zero. The quantity [W_(“)(rg) - w+(“)(rg)]
represents the magnitude of the discontinuity in the nth derivative of
W(r) with respect to range. Let it be denoted by D(W,g,n). The total

expression for the backscattered pressure from Equation 2.19 can then be

written as

£
P, = ZE: B, (2.27)
g=1
where
N
E = (E)exp(~i2kr ) :E: (Agat)y (2.28)
8 8 (i2k)
n=20

The quantity Eg represents the scattering contribution due to all
discontinuities in different orders of W(R)(r) at range rg, and the sum

of these contributions at all appropriate ranges rg is the total
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backscattered pressure Pg* At large ranges, the solid angle W(r) can be

replaced by the normalized area (Equation 2.l1) to obtain

Ar (i2k)

N
B, = ( iPZ)exp(-iZkrg) 2 (Mdaonly (2.29)
m

n=90

where
-, ( (n)
D(A,g,n) = A_ (rg) - A, (rg) . (2.30)

Before proceeding further, a few comments about the general
techniques just described should be reviewed. First, consider the
introduction of discontinuities in the zeroth and first order of
w(ﬂ)(r). When solving the Kirchhoff integral (Equation 2.6) directly,
one finds that it 1s necessary to split the range of integration
precisely as 1is done in the Freedman method because of either a
piecewise~continuous kernel or a surface parallel to the incident
wavefront. Solving each of the resulting continuous integrals will then
yield the same final solution as Freedman obtains, but the solution will
be perceived as arising from the integration between discontinuities
instead of the change of value at each discontinuity. From an intuitive
point of view, it is natural to expect some physical response to arise
at the point where a jump in a function that is otherwise continuous
occurs. However, the quantitative values associated with the
discontinuities are suspect because the surface field predicted by
Kirchhoff methods 1s known to be erroneous at edges (Wiener, 1949). In

fact, the accuracy of the Kirchhoff method is usually attributed to its
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integration over a few Fresnel zones without seriously violating the
assumption of a planar neighborhood. As a second comment, the higher-
order discontinuities in the Freedman method arise from a valid solution
technique in those cases where the integration—by-parts series
terminates. These discontinuities do not explicitly appear when
performing the Kirchoff integration directly. However, at points where
only a second- or higher-order discontinuity is found, the direct
integration method will be required to split the range of integration
exactly as does Freedman because of a change in the functional form of
the integrand (such as occurs at the rear joint of a cone-sphere).
Finally, note that the form of the function W(r) [or A(r)] must be known
explicitly in order to determine the values of the various
discontinuities. In addition, when the functional form is known, it
frequently exhibits essential discontinuities in its derivatives. Any
furthe- evaluation of the Freedman method is best performed by
comparison with experiment, as has been done in Chapter 5 of this

document.

2.3 Extension of Results to Narrow-Band Pulses

Under the assumption of narrow-band pulses and idealized
transmitting and receiving systems, the results of Section 2.2 for
continuous, monofrequency scattering can be extended to include pulsed
signals. Let V(T) represent the waveform of the incident pulse on a

time scale where

2r
T=t - (—cﬁ) . (2.31)
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The bandwidth of the pulse is assumed to be sufficiently limited for

V(T) to be represented as

V(T) = V'(T)exp(imoT) , (2.32)

where Wy is the center frequency of the pulse’s spectrum. This is true,
for example, with a gated sine burst for which the gating envelope
includes several cycles of the sine wave. Consideration of the waveform

shape is based on the following Fourier transform pair:

@

viw) = (%;) J V(T)exp (~iwT)dT (2.33)

-0

and

-]

v(T) =J v(w)exp (iwT)dw . (2.34)

-

Note that the factor 1/2T has been assigned to the forward transform to
simplify the following discussion.
The previously derived solution at each frequency, Equation 2.28,

can be separated into components from each order of discontinuity as

E(g,n) = (B)exp(-i2kr ) (2{H:E.0) (2.35)
> 8 (12k)"

Inserting the exp(iwt) time dependence (which has been suppressed) and
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rearranging to see the dependence on w, this equation becomes
( 2r
iwv . . N S0
dE(g,n) = (—E;Eﬁl]exp(lwt - 1u(—€5)j(i2d) D(W,g,n,s)dw
(2.36)

The left-hand side of Equation 2.36 has been designated dE(g,n) because
it now represents one frequency component in the spectrum. Note that
the wave constant P has been replaced by the appropriate spectrum
coefficient v(w), and the frequency dependence of D has been explicitly
denoted. The total response 1is obtained by integrating over all
frequencies to obtain

-]

Eg,0) = G5 “J W™ (w)exp (1wT)D(W,g,n,w)de .

OO

(2.37)

The spectrum of the transmitted pulse is assumed to be zero outside a

band of
w-(A—w)<w<w +(A_w) (2.38)
0 2 0 2 ) o
Equation 2.37 then becomes
w0+(Aw/2)
i c \n l-n
E(g,n) = (5;:9(;5 w  v{w)exp(iwT)D(W,g,n,w)dw
wo—(Aw/Z)
(2.39)
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Now assume that wl-n D(W,g,n,w) 1is slowly varying over the bandwidth of

integration. Thus,

_)o+(Aw/2)
i D(wyg:n"”o)
E(g,n) = G —_— v(s)exp(iwT)dw (2.50)
0 (12ky)
wo—(Au/Z)
where
wy = ke = -~ (2.41)
0

Since v(w) is band-limited, the integral in Equation 2.40 is just the

transform of Equation 2.34. As a result,

. D(W,g,n,w,)
E(g.n) = (v (————2%) . (2.42)
0 (iZkO)

Finally, using the form of V(T) given in Equation 2.32, one obtains

i ’D(W.g,n.uq)\
E(g,n) = (;—QV'(T)exP(iwot - i:korg){—————————_;_
0

—~
o
i~
w
~

Sap 40
kx_ko)

Note that this equation has exactly the same form as that for the
continuous-wave case, Equation 2.35, with the frequency and wavelength
parameters replaced by mean values.

In physical terms, Equation 2.43 indicates that a sine-burst pulse
of gufficient length and sufficiently smooth envelope will act

approximately like the continuous-excitation case for the pulse’s mean
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frequency. Each backscattered contribution will bpe an approximate image
of the incident pulse, and the total solution <can be <found by

vectorially summing the components. This last result is the reason for

denoting the Freedman technique as an echo formation method.

2.4 Examples of Some Simple Bodies

Probably the best way to gain insizht into the Freedman method is
through examples that are solved and compared with other results. The
following sections discuss solutions for the sphere, the circular disk,
the square plate, the finite cone, and cone variants. Comparison of
these results with experimental values is presented in Chapcter 5. Note
that the circular disk is a case where the Freedman method breaks down
but a direct solution of cthe Kirchhoff integral yields a valid

prediction.

2.4.1 Sphere Example

The sphere has been studied as a diffraction target probably more
than any other body. However, this fact makes it an excellent first
choice when evaluating a new scattering method. Computing the
backscattering from a rigid sphere at large range by the Freedman method
rests almost completely upon determination of the ranges and values of
the discontinuities in the projected area A(r). A qualitative plot of
these functions with the associated geometry is given in Figure 2.3.
The only discontinuities lie at the specular reflection point and the
shadow boundary (i.e., at the closest and furthest illuminated points).

A tabulation of the values of these discontinuities is given in Table
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Figure 2.3 Approximate values of the projected area A(r) and 1its
derivatives for a sphere.




2.1. Note that derivatives of A(r) of third or higher order are
identically zero except for delta functions, which have been considered
separately in the derivation of the solution technique.

Substituting the discontinuity values of Table 2.! 1into Equation

2.29, one finds for the components from ranges T, and r,:
i . i
E = GG+ ) (2.44)
rm
and
iM 1 , .
E, = (%5) (Gpexp(~i2ka) (2.45)
rm
where
M=P exp(-iZkrl) . (2.46)

The first term of the El component corresponds to that for geometrical
optics, while the second term is presumably a correction to that result.
E2 is a component arising at the shadow boundary.

The Kirchhoff integral in the form of Equation 2.10 can be solved
directly 1in this example by substituting for dA(r)/dr. Since the

{ntegrand is continuous, the process involves solving the expression

r.+a

-

- Jsa - letr - r))iexp(-ilkr)dr (2.47)
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Table 2.1
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Freedman Discontinuity Data for a Sphere of Radius a

al™ (r) D(A,1,n)  D(4,2,n)
2
naz{l - [(a - (r - rl)) /a] } 0 0
ZW(a - (r - rl)) ~2ma 0
=27 2% -2n
0 0 0
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formally and evaluating it at the two endpoints. The resulting
contributions at each end of the integration range correspond preciselv
to the previous expressions given in Equations 2.44 and 2.45. This is
not surprising since the Freedman results are based on the same
procedure except that the integration is done formally by parts before
substitution of the actual quantities. Note that one may have
difficulty attributing a ohysical significance to the discontinuities
with an order of greater than one in the Freedman solution because they
arise solely as intermediate results of the integration by parts.
However, the Freedman formulation replaces the integration required in
the evaluation of the solution with a series of simpler

differentiations.

2.4.2 Circular-Disk Example

The circular disk is interesting from the point of view of the
Freedman method because it is one of the simplest examples for which the
method breaks down. Figure 2.4 is a plot of the geometry and the
relative values of A(r) and its derivatives. At nonaxial incidence, the
projected area takes the form of an ellipse. The area of the ellipse
subtended as a function of range r can be computed by integrating a

strip parallel to the axis of rotation to obtain

1/2

A(r) = a2 cos e(R(l - Rz) + arc cos(R)) . (2.48)
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Figure 2.4 Approximate values of the projected area A(r) and its
derivatives for a circular disk at nonaxial incidence.
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a

where

a sin g - (r - rl)
R = - , (2.49)
a sin 3

a is the radius of the disk, and R varies between 1 at r1 and -l at r. .

The term (l-RZ)l/2 causes the breakdown of the Freedman formulation, as

(293

is easily seen by differentiating Equation 2.48 to obtain

da(r) | a2 cos 6( 1+ R + (1 - R2)1/2) . (2.50)
dr a1 - Rz)l/za sin 9

This expression and all further derivatives tend to either negative or
positive infinity at both endpoints of the range. Thus, the Freedman
solution reduces to a summation of infinite discontinuities at both L
and rz.

The problem of infinite discontinuities is based on the behavior of
the area expression (Equation 2.48) as a function of range. The initial
(zero) and final (maximum) values are approached smoothly with greater
and greater slope. Since the form of dA(r)/dr is troublesome, direct
evaluation of the modified Kirchhoff expression (Equation 2.10) 1is not
possible. However, the difficulty is, in fact, solely attributable to
the 1interpretation of the scattering process in terms of the area
derivative with respect to range. A continuous integrand can easily be
derived using the geometry of Figure 2.5. Note that, in this case, the
origin of the coordinates is placed at a convenient point on the
scatterer instead of a point on the transducers to simplify the

analysis. Substituting into the original Kirchhoff integral of Equation
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Figure 2.5 Geometry utilized in calculation of the scattering from a
circular disk.
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2.6 and assuming that the range is large, one obtains
a 27
-ipP ( ( iyt .
Py = (-—Eﬂexp(-iZkR) j J exp(iko’ cos : sin 2)
AR oo
. cos 8cdedd’ (-.51)
which can be evaluated using the formula (Skudrzyk, 1971, p. 697)
27
I (x) = (<o) J el¥ cos @ imo,, (2.52)
m .m
27i 0
to yield
. . J.(2ka sin 8)
- (-ikP exp(-i2kR), 2 1 \
s [ > )a cos 6[ k3 sin 0 (2.53)

R

This expression can also be utilized at normal incidence by taking the

limit as 8 >0 to yield

2

=ikP exp (-i2kR)) O (2.54)

RZ

P (8 = 0) =

These last results show that the problems encountered with the
circular disk are due to the Freedman interpretation and not the
Kirchhoff formulation itself. The particular geometry that precipitates
the difficulties (the projected ellipse) also occurs with other simple
objects such as finite cylinders and cones. From a qualitative point of
view, the Freedman prediction of returns from ranges r, and r

1 2
to have validity based on physical intuition, and this correctly

appears
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corresponds to observed data (see Section 5.4.3). However, the direct
Kirchhoff result obtained in this case does not separate into individual
components like the Freedman result would do because the integral was

recognized as a form of the Bessel function.

2.4.3 Rectangular-Plate Example

The geometry for the rectangular plate is shown in Figure 2.6.
Although it appears to be similar to that for the circular disk, the
projected-area function A(r) in this case approaches the endpoints at a
constant rate. Thus, the derivatives of A(r) are well behaved and
truncate at the second order, as is shown in Table 2.2. Substitution
into the Freedman equation (Equation 2.29) yields the following

components at £y and £yt

E = Vb cot § (2.55)
1 " 2
2nr
m

and

Mb cot 9 e—ibka sin 8

E, = ( ) (2.56)
2nr
m
The magnitude of the sum is
- - (P2kab cos 9, (sin(2ka sin 9)
lpgl = 1B, + E,] = < 3 ) B (2.57)
m

As in Section 2.4.), the same result is obtained by direct integration

of the Kirchhoff integral expressed in terms of the area derivative
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Figure 2.6 Approximate values of the projected area A(r) and its
derivatives for a rectangular plate at nonaxial incidence.
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Table 2.2

Freedman Discontinuity Data for the Rectangular
Plate of Figure 2.6

n A (1) D(A,1,n) D(A,2,n)
0 (2b/tan 8)(r - rl) 0 0
1 (2b/tan 9) -(2b/tan 8) (2b/tan 9)
2 0 0 0




(Equation 2.10), with the two cowponents (El and £,) arising from the

integral evaluation at the two endpoints.

2.4.4 Finite-Cylinder Example

The solution for backscattering from a finite circular cylinder at
nonaxial incidence includes contributions both from the disk at the
illuminated end and the side. The cylinder end is essentially the same
as the circular disk, and the Freedman summation breaks down in the same
manner as has been shown for the disk (see Section 2.4.2). This
summation also breaks down for the side component. However, the
Kirchhoff result can again be obtained directly.

Refer to the geometry of Figure 2.7. Calculation of the
contribution from the endcap follows closely that shown in Section 2.4.2

for the circular disk, with
r=R-op'cos 3 sin 8 + 2 cos 3 (2.58)
assumed at large range. The result is

Jl(Zka =2in e)\
2ka sin ©8 ’

-i2k% cos 8

2
Ya~ cos Se
(2.39)

which is the same as that for the disk except for the additional phase
factor involving the half-length 2 of the cylinder. Computation of the

side contribution is somewhat more involved. Assuming that

r =R -2cos 9 + a cos ¢ sin 8 . (2.60)
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Geometry used
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the Kirchhoff integral becomes
: 2l
o -i2kR T .
. -iPe (. -i2ka cos : sin 3
p (side) = (———) . e
s 2 I
AR L7
- O
. elZRZ cos 3 cos » sin 3 ad¢dz . (2.61)

This integral can be evaluated wusing a wmodified form of the Bessel-

function relation in Equation 2.52 to obtain

2 -i2 2 2 in 3
o ekCpe HRR (20 gia? 5y, Jy (ke sin )
PS(Slde) - ( 2 J( lka sin 9
R
. j0(2k2 cos 3) (2.62)

Equation 2.62 exhibits an angular dependence similar to that of the end
component multiplied by a jo(x) = sin x / x term that depends on the
length of the cylinder. Finally, in situations where the end and side

components interfere, the magnitude of their vector sum becomes

oL = (kaz)(Jl(Zka sin B)J{Cosz . s (leZQZ sin2(2k£ cos 9))
s R 2ka sin 8 (2k% cos e)z
. sin2 e(sin2 8 - cos2 3)}1/2 . (2.63)

2.4.5 Finite-Cone Example

The finite cone will first be considered for axial incidence only.
The geometry and behavior of the discontinuities are shown in Figure

2.8, and the quantities required for the Freedman solution are listed in




i |

- _

-

2 RANGE

A(r)

(1)
A(r)

————l ===

X

(2)
Aér)

F.J__—_

Figure 2.8

Approximate values of the projected area aA(r) and its
derivatives for a finite circular cone at axial incidence.
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Table 2.3. The evaluation yields for the component returns from the tip

S ) SN O 2 ”
El = (;—EJ(AR)tan € (2.04)
m
and from the rear
o ) 2 i -
E2 = (2r 2)exp(-12kh)h tan” (1 - (EEE)) . (2.65)

m

The magnitude of the sum becomes

2 2
_ _ (M tan” ¢ sin 2kh sin® khy,1/2
lp | = B + B, = =591 - G55 + )}

]
Zrm (kh)

(2.66)

The finite cone at aonaxial incidence presents some difficulty.
Depending on the relative values of the cone half-angle and the angle of
incident radiation, a number of individual cases must be considered.
For incidence at an angle less than the cone half-angle (i.e., 8 < ¢ in
Figure 2.9), all of the cone except the base is irradiated. However,
for € < 8 < /2, a shadow boundary is formed on the side of the cone.
Evaluation of the Freedman discontinuity data shows that, like the
circular disk and the side of the circular cylinder, the expressions
break down as a result of infinite discontinuities. A direct evaluation
of the Kirchhoff integral (Equation 2.6) can be constructed in this
case. However, the integration cannot be carried out analytically
except in the special case of axial incidence, for which one obtains the

same result as that of the Freedman method.




Table 2.3

Freedman Discontinuity Data for the Finite
Cone at Axial Incidence

A® (1) D(A,1,n) D(4,2,n)
w[h - (r2 - r))2 tan2 € 0 0
2 2
2n(h - (r2 - r))tan € 0 2vh tan” €
bl
2% tan2 € =27 tan2 € 27 tan” ¢
0 0 0
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Figure 2.9 Geometry used for calculation of backscattering from a

finite cone at nonaxial incidence.
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2.4.6 Modified Cone Examples

Variants of the finite cone are very useful for studies of
scattering from surface discontinuities. Comparisons of diffraction
from tips, first-derivative (slope) discontinuities, and second-
derivative (curvature) discontinuities can be made by joining portions
of spheres to the basic cone shape in the required manner. The Freedman
prediction method is well suited for this type of backscattering problem
because the solution can be constructed by joining the solutions of the
basic constituent shapes with the correct phase factors. At the same
t ime, studies of discontinuities on the surface of modified cones
represent a good test of the quantitative values for edge-type
scattering predicted by the Freedman theory (and hence physical optics),
at least for axial incidence where this theory is wvalid. Thus,
computations have been made for three selected cases: @) a cone-
sphere, where a sphere is joined to the rear of a cone smoothly in both
cross-section and surface slope; (2) a spherically capped cone, where a
sphere {s joined to the tip of a cone smoothly in both cross section and
slope; and (3) a hemispherically capped cone, where a hemisphere is
joined to the front of a cone smoothly in cross section only.

A representation of the geometry for the cone-sphere appears in
Figure 2.10. The spherical termination reduces the severe discontinuity
at the rear of the cone (whose contribution dominates the
backscattering) to a discontinuity in curvature only. The values of the
resulting Freedman discontinuity data are presented 1in Table 2.4.

Substitution of these data into the Freedman relation (Equation 2.29)
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Figure 2.10 Geometry used for calculation of backscattering from a
cone-sphere at axial incidence.
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yields for the scattering components:

E, = Endpean’ ¢, (2.67)
rm
-iM, -12kh 1 2 ;
E, = (r 7)e G +tan” &) (2.68)
m

and

. R 2
E3 - (1M?)e-12kh(l+tan €)
e 2
m

1
(ZE)

(2.69)
As expected, the contributions from the closest (El) and furthest (E3)
rangés are equivalent to those from the cone and sphere, respectively,
modified by the proper phase relationships for the new geometry. The
contribution EZ from the cone-to-sphere joint region, which has the same
frequency dependence as that from the tip (El) but is much stronger, is
a new result.

To compare the scattering from a curvature discontinuity with that
from the abrupt rear edge of a cone, a spherically capped con. is used.
The geometry 1is shown in Figure 2.l11, and the Freedman discontinuity
data are listed in Table 2.5. The values have been computed by
specifying the radius b of the spherical nose and then determining the

shortening parameter m that will match the surface slope at the joint.
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Figure 2.11 Geometry used for calculation of backscattering from a
spherically capped cone at axial incidence.
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The pressure components from the three discontinuities are
- -1 b, - i -
B, = (CRR U+ Gyl (2.70)
“n
iM | -i2kb(l-sin €) 1 2 . -
EZ = (—"2‘)e (Ak)(l + tan~ ¢) , (2.71)
T
m
and
2
h -i2k(b(1l-si +mh} h t ¢ i
E. = ( M ye i k({b(i-sin ¢) )( 3n E){l _ (oi‘))
3 r 2 < <Kkh
m
(2.72)

These expressions, with the exception of the geometry-related phase
factor, correspond to the specular sphere component (El)’ the cone-
sphere joint (Ez), and the cone termination (83), respectively.

Finally, in order to note the difference between a discontinuity in
curvature and that of slope, the cone can be capped with a true
hemisphere whose radius is the same as that of the cone at the joint
(see Figure 2.12). The Freedman discontinuity relations for this case
are summarized in Table 2.6. The only change in this table from that of
the spherically capped cone (Table 2.5) 1is the additional discontinuity
at rz in the first derivative, although the phases involved in the

resulting pressure terms also differ slightly. The pressure
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Figure 2.12 Geometry used for calculation of backscattering from
hemispherically capped cone at axial incidence.
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contributions from each point of discontinuity in the range are

-M b iy N
E = Q0+ G (2.73)
rm
-i2kb 2
- ,=Me b (i(l + tan” €)y . -
E, (————3-“—0(§O{tan € + k‘“"ﬁiﬁ;”iiaf , (2.74)
rm
and
=12k (b+mh) 2 .
Me h tan ¢, - i
Ey = | — 1 ( L - () - (2.75)
m

The contribution at the joint (EZ) in this case includes a frequency-
dependent curvature quantity along with an additional frequency-

independent quantity related to the discontinuity in slope.




CHAPTER 3

EXPERIMENTAL SETUP FOR GATED-PULSE MEASUREMENTS

This chapter contains a description of the measurement chamber, the
transmitting and receiving apparatus, and most of the scattering uodels
used for gated-pulse measurements in this study. In addition, there is
an explanation of some points of technique that should be of interest,
such as the actual pressure component that is plotted in the results.
Because the reliability of the data and conclusions presented in this
document is based on the apparatus and the procedure utilized in the
investigations, the description in this chapter is both necessary and
important. However, most of the information is not required for an
intuitive overview. The delineation of the signal-detection procedure
in Seq;ion 3.4 is an exception; it should be reviewed so that the plots

appearing in.later chapters can be correctly interpreted.

3.1 Measurement Chamber

All experiments in this study that involve gated-pulse techniques
were performed in the small anechoic chamber pictured in Figure 3.1.
The chamber, which has been described in detail by Berger and Ackerman
(1956), is located in the basement of Osmond Laboratory (Physics
Department) at The Pennsylvania State University’s main campus. The
12 x 8 x 6 foot inside dimensions of the room make it fairly small, but
it has true fiberglass wedges backed by a cavity on all wall, floor, and
ceiling surfaces. Because this facility is used for psychoacoustic work

involving human subjects, the room contains a heavy metal grating that




Figure 3.1 Photograph of the measurement chamber with the 28-inch
prolate spheroid in position.
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serves as a floor. Sections of this grating that lie under the
scattering object are sometimes removed during diffraction experiments
to eliminate the associated reflections, and all remaining floor
sections are always covered with a lightweight, unbacked fiberglass
(Owens-Corning R13).

Tests show that the measurement chamber is qualified for acoustic
measurements from at least | kHz to more than 50 kHz, based on the
standard inverse-square-law propagation criteria for a small source.
However, this verification procedure is of little value for diffraction
measurements. A spurious reflection reaching a microphone in the
chamber at a level 10 dB or more below the direct signal will have no
noticeable effect on the total received signal. Thus, the propagation
loss measured for the given source/receiver path will not differ from
that obtained under free-field conditions. On the contrary, the same
spurious reflection may completely obscure returns from a scatterer,
which are frequently 20 - 40 dB lower in amplitude than the incident
pulse. A better indication of the chamber’s suitability for scattering
measurements was obtained by measuring the backscattered return from a
small spherical scatterer at different ranges. As expected, the latter
test did point out some inaccuracies caused by spurious reflections in
the chamber at all but the highest frequencies examined. Thus, although
the reduced amplitude of the wall reflections in an anechoic chamber is
helpful, diffraction measurements in this type of chamber must still
utilize gated-pulse techniques, and the researcher must use skill when
placing measuring equipment and models in the chamber to mwminimize

spurious reflections.




The measurement chamber was modified slightly for <this study. A
suspension point in the form of a 5-inch-diameter disk with hooks along
its perimeter was installed between two wedges in the ceiling. This
support can be electrically rotated in either direction at about 1/2
r.p.m., and it includes a precision potentiometer that develops a
voltage proportional to the rotational position. Directly below the
ceiling support is the pivot point of a short rotating boom that can be
mounted just above the grating (floor). This boom, which also contains
a potentiometer for position indication, is used to rotate the

‘

microphone about the scatterer for collection of bSistatic scattering

data.

3.2 Measuring Equipment

A block diagram of the measurement apparatus, including a plan view
of a chamber setup and the associated electronic equipment, is shown in
Figure 3.2. The transmitting equipment consists of a Spectral Dynamics
SD104A-5 sweep oscillator, a General Radio 1396-A tone-burst generator,
a Dynaco Mark III power amplifier, and a suitable loudspeaker. A
separate oscillator drives the timing input of the tone-burst wunit to
permit pulses of constant length. (Pulse timing is based on cycle count
in the GR unit.) Because the tone-burst generator attenuates the output
signal by only about 40 dB in the off state, a passive thresholding
circuit consisting of two parallel diodes has been inserted at the
output of the generator. This circuit adds a small amount of distortion
to the signal near zero volts, but it improves the off-state attenuation

by at least 40 dB. The power amplifier has sufficient drive capability
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Figure 3.2

Block diagram of the measurement chamber (in plan view)

the associated electronic equipment.
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to apply a 60-volt (peak-to-peak), short-duration pulse to a loudspeaker
with an impedance of 8 - 16 ohns.

The selection of suitable loudspeakers for this study was one of
the more difficult tasks. The size of the models and characteristics of
the measurement chamber dictate a frequency range of about 10 - 50 kHz.
In addition, a good pulse response is required. Three different tweeter
units have been used throughout the study in a roughly chronological
sequence. The first is an inexpensive piezo-bender horn loudspeaker
manufactured by Motorola (Super Horn, Model No. 50D59067A01). This
tweeter provides a reasonably flat output over the frequencies of
10 - 40 kHz. However, asymmetries occur in its directivity pattern at
angles small enough to influence the scattering from the larger models.
The Motorola tweeter also has a low power-~handling capacity, which
mandates a low repetition rate for the pulses. The second tweeter is a
dynamic horn loudspeaker with a titanium diaphragm wmanufactured by
Technics (Model No. EAS-9HH42). This wunit has a very smooth
directivity curve and a large (20 watts continuous) power-handling
capability. However, it has no useful output at frequencies above about
25 kHz, and the mass of its coil assembly degrades the transient
response. The best tweeter that has been found is a magnetic-ribbon
unit also manufactured by Technics (Model No. EAS-10TH1000). This
loudspeaker has a usable output from about 5 kHz to at least 5V kHz. It
also has both a wide, uniform directivity pattern and excellent
transient characteristics. Unfortunately, the ribbon tweeter is very

expensive and somewhat difficult to obtain.
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The receiving equipment wused for gated-pulse measurements in this
study consists of a Bruel and Kjaer 1/2-inch condensor microphone (Model
4133) with associated cathode follower and power supply, an lthaco llodel
435 ad justable-gain preamplifier, am 18 - 24 dB/octave filter (either an
SKL 302 or an Ithaco 4302), a Tektronix 561B oscilloscope, a special
receiver-gate module, and a Mosley Model 135 X-Y plotter. The excellent
(although insensitive) response of the condensor microphone at
frequencies up to 40 kHz made selection of this critical transducer amuch
easier than that for the loudspeaker. The filter 1is used only for
suppression of residual hun components from the microphone and
associated cables. The oscilloscope is used to monitor spurious returns
and to observe pulse shapes. (The waveform of the scattered returns
frequently conveys useful 1information about the physical scattering
mechanism.) Finally, the plotter is used to make graphs of selected
returns as a function of either the appropriate rotation—position signal
from the chamber or a ramp voltage proportional to frequency from the
sweep oscillator.

The heart of the receiving system is the receiver-gate module.
Although commercial wunits exist, the module wused in this study was
constructed as part of this project to reduce the required expenditure.
The device performs the following functiouns: (1) full-wave rectifies
the input signal; (2) measures the peék value on a logarithmic scale;
and (3) samples and holds the peak value received in a preset time
window until the next pulse. In application, the width and time delay
of the sampling window are adjusted to include the desired returns, and

a continuous plot (actually wupdated at every pulse) is made of the
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amplitudes of the returns. The circuit designed for this project can
provide a dynamic range of about 40 dB (60 dB if carefully adjusted).
Because of its wusefulness and relatively small cost, a complete
schematic of the device is included as Appendix B. Note that a version
of this device used for some of the earlier data drifted in calibration
over time by as much as 2 - 3 dB, which meant that the calibration had
to be checked frequently to insure reasonable accuracy. The final
version (described in Appendix B) appears to be stable within at least 1!

dB over a period of weeks.

3.3 HModels

Several experimental models have been either acquired or built for
this study, including prolate spheroids, cylinders, spheres, and finite
cones. Most of the models are made of wood, although the selection of a
construction material is not critical in most cases. The high ratio of
characteristic impedance between the model material and surrounding
medium that 1is required to consider a scatterer as a rigid body is
easily satisfied for experiments in air. A soft wood such as pine has
an impedance that is almost 4000 times that of air. Even a soft rubber
has an impedance 160 times that of azir. For this reason, all the
scatterers and surface obstructions used in this study are considered as
ideally rigid except the cloth d¢amping material used in several
experiments.

The assortment of spherical models allows scattering data to be
colleéted over a range in ka (a = radius, k = 2m/A) of about .6 = 120

for a frequency range of 10 - 40 kHz. The largest spheres are spun-
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aluminum shells of 6- and 12-inch diameters. The smallest spheres are
steel ball bearings having 1/2- and 1/4-iuch diameters. The validity of
the data obtained from the two smallest spheres (i.e., for ka < b) is
somewhat questionable, however, because almost any form of suspension
scatters more than these spheres. Standard pool balls, 2-1/4 inches in
diameter, also make excellent models. Because of their easy
availability, these balls hive been used wherever the models have been
modified in a destructive manner.

Cylindrical models appropriate for both finite and infinite
examples have been utilized. The "infinite" cylinders are aluminum
tubes that are at least 6 feet long and have 6-, 1-1/4-, and 3/4-inch
diameters. This translates roughly into a ka range of 2 - 60. The
models used as finite cylinders, however, are concentrated in a lower ka
(frequency) range of .3 - 7. These small cylinders were machined from
solid drill rod in all combinations of the lengths of 1, 3/4, 1/2, 1/4,
and 1/8 iach and diameters of 3/4, 1/2, 1/4, and 1/8 inch. The 20
cylinders were used both individually and as obstructions placed on a
spheroid.

Figure 3.3 shows the spheroidal models used. There are three
prolate spheroids with a length-to-width ratio of 7:1 and major axes of
42, 28, and 14 inches. These thin spheroids were originally constructed
for hydrodynamic tests, and they are made of solid wood that is heavily
varnished. Using the radius of the spheroid at the tip as the
characteristic dimension a, the range in ka covered is about .7 - 7. If
the normalized spheroidal coordinates (see Section 4.l) are considered,

the range of the parameter hf{ covered is about 30 - 390. A less

_
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Figure 3.3 Photograph of the prolate-spheroid models.
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eccentric, wooden (unvarnished) spheroid with dimensions of 3 x 5 inches
was obtained for the creeping-wave measurements. For this spheroid, the
parameter h varies over a range of about 12 - 48,

Figure 3.4 shows the special cone model that was constructed for a
series of tests on edge diffraction. The basic shape is that of an
18-inch-long cone with a 20° half-angle made of uncoated wood. If b is
the radius of the base (which, in this case, is just over 6-1/2 inches),
the range of kb covered is about 28 - 112. This translates to a range
in kh of 85 - 335, where h is the cone length. The tip of the cone was
constructed as a separate section and then attached to the point on the
cone body at which the radius of the cone is 2 inches (i.e., about 5-1/2
inches from the tip). This tip section can be removed and replaced by
one of several caps that form specular regions and/or edges on the
surfacef The caps include portions of spheres that join the cone
outline smoothly in both cross section and slope to produce nose radii
of 1/2, 1, and 2 inches (C, D, and on cone in Figure 3.4), respectively.
There is also a hemispherical cap with a 2-inch radius (A in Figure 3.4)
that is continuous only in surface cross section at the union between
the hemisphere and the cone. In addition to the various caps, the base
of the cone contains a threaded fixture countersunk into its surface so
that special terminations can be mounted. The two terminations used
include a hemisphere with a radius equal to that of the cone base and a
large spherical section that preserves both the slope and cross section
of the cone outline at the joint (cone-sphere). The cone and all of its
caps and terminations were machined precisely out of solid wooden blocks

on a tracing lathe using numerically generated patterns. Despite this

e




-

90

Figure 3.4 Photograph of the special cone model,

including its various

spherical and hemispherical caps and terminations.
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care, the line on the surface of the cone at which the caps join with
the basic model generated scattering returns of its own (see Section
5.4.1). Note that the line where the spherical sections or  the caps
join geometrically with the cone outline is not the same as the phvsical
joint between the cap and the basic model except for the 2-inch caps.

In addition to the basic shapes already mentioned, several models
were constructed to test specific conditions. These models include
half-planes, planes terminated in half-cylinders, and modifications ot
the basic spherical shape. The models are described in detail in later
sections along with the corresponding experimental results. Note that
commonly available items, such as rubber bands and modeling clay, were
also wused extensively to patch or distort the basic models. This
procedure permitted experiments to be interactively modified wusing the
guidance of current results without waiting for additional models to be
constructed.

The support mechanism for all the models proved to be a major
problem. Early experiments showed that a 3/4-inch-diameter support rod
scatters virtually as much as the 42-inch spheroid at broadside
incidence. The implied requirement for very small vertical suspensions
is evident in the trace of Figure 3.5. The scattered return (B) in the
figure is from the 28-inch spheroid at 34.3 kHz for incidence 30° from
the axial direction; the return (A) is from a length of braided fishing
line (25-pound test) hanging vertically just in front of the spheroid
nose. Problems with undesired suspension echoes are greatest for
spheroids and small spheres, whose scattered returns are very small;

however, these problems must be given careful attention when using any
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of the models described here. The suspension-echo problems can be
partially alleviated by mounting the support strings at an angle to the
vertical line in order to direct any scattered return away <from the
receiver. For example, the two large returns following return (B) in
Figure 3.5 are from the fishing lines (also 25-pound test) that support
the spheroid in this manner. However, in order to provide completely
satisfactory results, a tempered steel wire, only about .007 inch in
diameter and attached to hooks countersunk completely into the models’

surface, was used for all models that this wire could support.

3.4 Techniques

The basic procedure for using pulsed sources and gated receivers in
scattering measurements is so commonly known that it requires no further
explanation. However, some discussion 1is important for a proper
interpretation of the results of this study. First, one must know which
property of the received signal was detected. Second, many of the major
intuitive keys described in this document were discovered by using
methods and data that are not revealed 1in the plots that are presented.
Thus, understanding the general procedures that were followed is useful
in order to place the results in perspective.

One important decision that must be made by all experimentalists
involves the quantitative values assigned to the returned signals. The
waveforms scattered by even simple shapes can have very strange
envelopes that vary with time as different scattering mechanisns
interact. To eliminate any confusion about what part of a received

pulse to measure, this author chose, unless otherwise specified, to use
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a pulse that was short enough to isolate all independent scattering
mechanisms and then to detect the largest return. Thus, the window on
the receiver gate was set to include all desired returns from the model,
and the gate detected and plotted the peak value of the largest signal
in that window. A particular plot may be dominated by two or more
different mechanisms at different parameter ranges if the returns
attributed to these mechanisms alternately assume the maximum value in
the window. To supplement these total results, the individual returns
were isolated in the window for separate plots whenever there were two
or more distinct returns visible. The time~delay setting of the window
was placed on a large dial so that it could be manually manipulated to
track a particular return when necessary.

Most of the final experimental plots 1included in this document are
traced directly from the recorded results after shifting the vertical
scale for proper normalization. Although much of the fine structure
that is visible is not significant, it does give the researcher an idea
of the variability in the data and thus the level of confidence that can
be assumed. Much of the information learned from the experiments does
not appear explicitly in the plotted results. For example, the almost
total specular dependence of the backscattering from a prolate spheroid
was indicated by the scattered pulse envelope for relatively long pulses
being virtually identical to that of the 1incident pulse. Careful
observation of such details from even a simple experiment was found to
be an efficient method for developing intuition about the scattering

process that could be used to target future experiments.
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One common (but somewhat unorthodox) procedure involved the author
manipulating the various elements in an experiment from inside the
chamber while observing the resulting effects on an oscilloscope placed
within view. This technique can be used, for instance, to quickly
determine the origin of observed pulses by moving objects and placing
small pieces of damping material within various possible acoustic paths
until a change is noted. The sensitivity of the data to scatterer
position can also be examined by forcing the scatterer slightly away
from its stationary position. In general, this quick-look approach,
combined with careful observation, has been used extensively to develop
intuition and understanding of the mechanisms at work. Accurate
quantitative plots of the noted effects can then be interpreted and
extrapolated more effectively.

In many cases, 1t was found that judicious experimental procedures
allowed useful data to be obtained in an apparently hopeless situation.
For example, Figure 4.53b (on page 183) shows the scattered returns
obtained in a search for creeping waves on a thin prolate spheroid.
Return (SP) 1s the specular echo, and return (CRP) is the creeping-wave
echo; all other returns are from the chamber surfaces, microphone, etc.
The spurious echoes are obviously large enough to obscure the desired
data. However, by observing which returns moved in time with the body
and by rearranging the equipment to get these returns in a relatively
clear area of the trace, accurate quantitative information has been
obtained. The improvement 1is, unfortunately, limited to a single
frequency per arrangement because the spurious returns generally change

when the frequency 1s varied. This fact is the most important reason
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why few continuous frequency-response plots are presented ia this study.
Directive sources can be used to some advantage against this problen,
but a compromise is required between irradiating the entire scatterer
uniformly (to simulate farfield conditions) and not irradiating the
walls of the chamber (to minimize spurious reflections).

Finally, one should note that the data do not represent truly
farfield diffraction measurements. The transducers are not much more
than one body length from the model for the large scatterers. Thus, the
exponentially decaying field near the scatterer has decayed adequately
to meet the conditions for the acoustic farfield, and higher iaverse
powers of the range are beginning to get small. However, the scattered
wavefront nust travel much further to reach an essentially plane-wave

condition.




CHAPTER 4

SMOOTH-BODY DIFFRACTION MEASUREMENTS

This chapter discusses the results of an investigation into the
scattering from smooth convex bodies and smooth bodies with small
obstructions on their surface. The physical phenomena are probably some
of the simplest of all those in the broad area of diffraction. Despite
that fact, the geometrically simple body chosen as the basis for most of
the experiments, the thin prolate spheroid, continues to prove
troublesome in both theoretical and experimental work. The shape is
useful as a model of objects from ship and airplane bodies to finite
wires. In addition, it represents a very fundamental example (i.e.,
dual radii of curvature) that must surely be understood before moving to
more complex bodies.

A variety of simple experiments were either selected or evolved for
this investigation. First, a study of both the directivity and
frequency response of the backscatter from a prolate spheroid was
carried out. This effort included tests of spheroids that were damped
at selected areas on their surface as a means of locating the origin of
the primary scattering sources. The results checked closely with simple
geometric calculations. Then, the sensitivity of the backscattering to
small changes in the smooth curvature of the spheroid was examined.
This work looked at small surface imperfections, holes in the body, and
both bands and cylinders placed on the surface of the models. The
cylinders, 1in particular, proved very informative, demonstrating the

effect of surface fields near the spheroid that modify the scattering by
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objects in that wvicinity. These experiments also showed the dramatic
change that occurs when moving from a doubly curved body to a body that
is flat in one dimension. Finally, a detailed examination of the Franz-
type creeping waves was performed. These studies verified the existence
of some scattering component that appears to circumnavigate both spheres
and spheroids. However, they also revealed additional properties that

point to a much more complicated phenomenon than traditional creeping

waves.

4.1 Geometry of the Prolate Spheroid

The prolate spheroid is a cigar-shaped body formed by rotating an
ellipse, such as that of Figure 4.la, about its major axis. For
purposes of discussion, it is convenient to define a set of

nondimensionalized coordinates by choosing

r. +r
1 2
3 == , (4.1)
r, - r
1 2
no= =g s (4.2)
and ¢ as the angle of rotation about the major axis. The resulting

coordinate surfaces for a constant £ and N at a given ¢ are ellipses and
hyperbolas, respectively (see Figure 4.lb). A particular model with a

given length-to-width ratio corresponds to a coordinate surface Eo,
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Figure 4.1

(b)

Geometry used to describe prolate spheroids,
the dimensions of the ellipse of revolution and (b) the

associated orthogonal coordinate surfaces.

99

including (a)




100

where
2a a € ’
£ == = = > (4.3)
0 d (32 _ b.)1/2 (52 l)l/
for
s=% (4.4)

The value of 50 for the 7:1 spheroids used in this study is l.0l. Note
that the definition of a particular spheroid requires both a radial-type
parameter £ and an interfocal distance d, whereas a single radius
parameter is sufficient to define a particular sphere.

To further standardize the spheroid parameters, a new frequency

that is normalized to the interfocal distance is commonly defined as
h == . (4.5)

This definition leads to a frequency/radius parameter hEO = ka, which
corresponds precisely to that of a sphere with the same major radius.
The nondimensional parameter hEo is thus wuseful for fat (slightly
eccentric) spheroids at any incidence angle and for all spheroids at
broadside incidence, but its intuitive value for thin spheroids at or
near axial incidence is somewhat questionable. This dilemma of finding
suitable normalized parameters to describe the scattering from thin
spheroids reappears when trying to interpret many of the results of this

chapter.
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4.2 Backscattering from Prolate Spheroids

4.2.1 Backscattered Frequency Response from a Prolate Spheroid

One of the first experiments performed in this study involved a
determination of the frequency dependence of the backscatter from a
prolate spheroid. The data were obtained on a point-by-point basis by
reading the peak value of the received signal from an oscilloscope at
discrete settings of the frequency and incidence angle. The values are
plotted as a function of the normalized frequency hio in Figure 4.2.
For purposes of comparison, all amplitudes have been normalized to the
backscatter from a sphere with the same diameter as the major axis of
the spheroid (42 inches in this case). Note that the reference (sphere)
scattering value was actually obtained by first measuring the
backscattered amplitude from a 6-inch-diameter sphere and then
multiplying that result by the appropriate ratio between the desired and
measured sphere radii. Although the reference sphere is not constructed
of the same material as the spheroid model, both are essentially rigid
scatterers (refer to Section 3.3).

The results of Figure 4.2 show that the backscattered pressure at
different angles of incidence varies over a range of about 30 dB for
this 7:1 prolate spheroid in the frequency range given. The values are
reasonably uniform with respect to frequency for broadside (90°) and
axial (0°) incidence, but some variability is observed in the angular
range between these extremes. In particular, a dip at about h&o = 320
is noted. There is also a rapid change in amplitude over the angular

range of 30° - 759, The sensitivity of this data to small angular
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Figure 4,2 Backscatter versus normalized frequency from the
prolate spheroid at several incidence angles.
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changes at any point in the angular range is actually more pronounced
than may appear. In taking these measurements, a critical alignment of
the scatterer, source, and receiver had to be maintained to insure
repeatability of the results. This requirement resulted from the highly
directional nature of the backscattered field at many incidence angles,
including both axial and broadside incidence. Note that the full extent
of the spheroid model could not be kept within the main radiation lobe
of the speaker used for tha2se measurements.

The experience gained in gathering these data led to several
changes in technique for future experiments. First, a receiver-gate
module was designed and built to provide a virtually continuous density
of data values with respect to the parameter under consideration (either
angle or frequency). Second, an alignment procedure based on leveling
with an optical telescope was adopted. Finally, the receiver was moved
from beside the source to directly in front of it. This latter
arrangement more closely approximated the coincident transducers assumed
for backscattering, and it reduced the difficulties experienced in

trying to measure highly directive returns.

4.2.2 Backscattered Directivity from a Prolate Spheroid

In order to better analyze the angular dependence of the spheroid
backscatter, directivity curves were taken at several discrete
frequencies within the range of 130 = 260 in hio. Three of these curves
are plotted in Figure 4.3. After the values are normalized to the
backscattered pressure from a sphere with the same major radius, the

curves are 1identical within experimental accuracy. The spheroid
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backscatter is seen to vary rapidly in amplitude over the angular range
of 30° - 750 but remain basically stable in the range 0° - 30°. 3ecause
the curvature of the body varies rapidly near the tip but becomes
spherical at the tip, one expects that the region just beyond the tip
governs the scattering from 30° - 75° and that the region at the tip
governs the scattering for 0° - 30°. The lack of any noticeable change
in directivity over the 2:1 frequency range indicates that the effective
high-frequency limit has been reached, even in the axial direction where
the radius of curvature at the specular point 1is of the order of a
wavelength-. The high sensitivity to alignment errors observed
previously (Section 4.2.1) was also noted here. In this case, symmetric
curves could only be obtained when the rotational axis of the spheroid
was accurately maintained in the same horizontal plane as the source and

receiver.

4.2.3 Backscattered Directivity from Partially Damped Spheroids

While collecting the data reported in the previous two sections, a
consistently close resemblance between the waveforms of the scattered
and incident pulses was noted that 1indicated a simple scattering
process. In order to gain information about the locations of the
important scattering sources, an experiment was devised to selectively
damp various portions of the spheroid surface and to compare the
backscatter results with those from a plain spheroid. The frequency

used, which corresponds to an hg., of 223, was selected primarily to

0
obtain a good dynamic range in the measurement chamber because the
backscattered directivity does not vary with frequency in the range

under consideration.
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The first requirement for the damped-spheroid investigation was a
suitable absorbing material. After evaluating many samples of various
fabrics, a heavy corduroy material was selected. The backscattering
characteristics of this fabric when applied to a flat baffle about
2-feet square are plotted in Figure 4.4. All amplitudes in this figure
have been normalized to the level of the reflection from the plain
baffle at normal incidence. The weave of the fabric includes a series
of parallel ribs in one direction. These ribs generate a peak in the
backscatter results as a result of constructive interference when the
ribs are positioned parallel to the baffle’s rotation axis (vertical
axis) and the proper angle is set. The peak is noted when the fabric is
mounted with the ribs facing either toward or away from the baffle.
However, mno such peak 1is found when the ribs are rotated to any other
position. In the latter case, the corduroy material provides an
attenuation of about 7.5 dB at normal incidence, and it has only a small
additive effect on the backscatter at other angles (refer to Figure
4.4).

Using the 28-inch spheroid as the model, portions of the spheroid
were covered with a single layer of the corduroy fabric applied in
variable~width strips, starting at the center of the spheroid and
working outward in steps. Each strip was carefully fastened with
double-sided tape so that the cloth adhered tightly to the spheroid’s
surface, and the ribs in the material were kept parallel to the
spheroid’s major axis. The tips of the spheroid were covered with
fabric sections cut to a measured pattern and sewn together. A
photograph of the spheroid with some damping material on its surface is

shown in Figure 4.5.
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Figure 4.5

Photograph of the 28-inch prolate spheroid with a portion of
its surface covered in a corduroy damping material.
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Backscattered-directivity curves were recorded for six different
percentages of the surface of the spheroid covered at both ends. The
results are summarized in the curves of Figure <.6. The backscattering
from the damped spheroids 1is not as simple as that for plain spheroids
(Section 4.2.2); it now includes interference effects and some rough-
surface scattering. However, the backscattering from the totally damped
spheroid is generally about the same as that for the plain spheroid
reduced by the 7.5-dB normal-incidence damping factor. Note, in
addition, that damping only small areas near the tips of the spheroid
produces an attenuation equal to that of the totally damped spheroid
over the majority of the angular range. This result indicates that the
primary scattering component for about 70% of the range of incidence
angles originates near the illuminated tip of the spheroid.

When mwmore than just the ends of the spheroid 1is covered, the
backscatter data correspond closely to the data for the end-damped case
except that attenuation is observed for a slightly larger angular range.
Figure 4.7 shows curves obtained for four different percentages of
damping. Note that the region in which all four of the damped-spheroid
plots are similar has been darkened between the extremes to reduce
clutter in the graph. In these and other cases not shown, the incidence
angle at which the plot for the damped spheroid begins to exhibit
attenuation over that of the plain spheroid corresponds approximately to
the angle at which the specular point of the spheroid falls at the edge
of the damping fabric., For example, the angles at which the edge of the
fabric 1in cases A - C of Figure 4.7 corresponds to the specular

reflection point are 65°, 77°, and 82°, respectively. There is a
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112
definite relationship between these three angles and the curves of the
figure, although the influence of the damping fabric appears to extend
somewhat beyond the physical edge of the material.

When the spheroid is damped in the center instead of the ends, a
complementary effect is observed. This effect 1is summarized 1in the
curves of Figure 4.8. 1In this case, all of the spheroid except the very
ends (i.e., last 2 inches of the major radius) is covered with the
damping fabric, but attenuation of the backscatter is noted only for
angles of 1incidence greater than about 70°. Furthermore, the
backscatter near axial incidence in this case is worse because of an
additional contribution from the thickness of the fabric (about A/6) at
its leading edge. Figure 4.9 shows that similar results are obtained
when a smaller portion of the spheroid’s center is damped, except that
attenuation is observed for an even smaller range of angles near
broadside incidence. Once again, the transition to attenuated values is
associated with the angle at which the specular points fall near the
edge of the damping material (angular values of 65°, 779, and 82° for
cases A - C of Figure 4.9). In fact, additional tests showed that dips
could be introduced in the directivity curve near any desired angle by
applying a thin fabric strip to the spheroid model at the location of
the corresponding specular point.

When interpreting the results of this section, one should keep the
type of receiving technique utilized in mind. The receiver-gate module
is set to include returns from anywhere on the spheroid, and it detects
the amplitude of the largest return in that window. Thus, when there

are two separated returns, such as from the tip of the spheroid and the

e e e e e C e i B T T e mmmmn e e st e
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damping-fabric edge, the largest of the two returns determines the
plotted amplitude. The curves shown in the figures have been traced
trom the actual plotted results. No data smoothing or other processing
has been performed except a shift of the amplitude scale to normalize
the values to a sphere with the same major radius as the spheroid. The
slight asymmetries in the data are related primarily to the directivity

of the source used in the experiments.

4.2.4 Geometric Calculations for a Prolate Spheroid

The results of the investigations for both plain and partially
damped spheroids (Sections 4.2.2 and 4.2.3) strongly suggest that only
specular reflection is being observed. Because this scattering
mechanism is associated with tangents to the surface, it 1is useful to
examine the geometry of the spheroid. Refer to Figure 4.10. From the
figure, it is obvious that specular points for various spheroid
orientations cluster near the tips because of the rapid changes 1in

curvature there~-especially in the case of thin spheroids. This

.explains why damping only the tips is so effective over a wide range of

incidence angles (see Section 4.2.3). To compute the specular point, it
is convenient to express the generating ellipse of the spheroid in terms

of the parameter ¢ as

x' = a cos ¢

y' = b sin ¢ , (4.6)

where 2a and 2b are the major and minor axes, respectively. Similarly,

let the field point be defined by its position on a circle of radius Ty

e ———

Y
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SPEAKER

Figure 4.10 Geometry used for the calculation of backscattering from a
prolate spheroid.




as

X = 1, cos 3

‘<

= r sin 9 . (4.7) ‘

The radius ro is the distance from the center of the spheroid to the
transducers. This distance can be approximated by the distance from the
center of the spheroid to the microphone. Using elementary relations
from analytic geometry for parametric curves, one can compute the
equation of the normal to the ellipse and the intersection of this
normal with the field-point circle. The resulting expression is

2 2 r,a
ry sin 6 = (SE——E—E;))sin o + (—g—)tan ¢ cos 6 . (4.8)
b

Equation 4.8 relates the specular point on the ellipse given by the
angle ¢ (Figure 4.10) with the angle of incidence 8 for a given ro.d A
numerical solution of this relation was used to locate the specular
points associated with the damped-spheroid directivities presented in

Section 4.2.3.

The influence of surface curvature on the scattered field 1. can be

£
expressed in terms of geometric spreading from the surface field IS as
(Figure 1.1)
L - LN CIPY (4.9)
£ (o) +8)(py +5)
The values pl and 02 are the two principal radii of curvature of the

surf3ace, and s is the distance from the surface to the field point. if




s 1s large, Equation 4.9 reduces to

I
== (4.10)
Gs
where G = l/olp2 is called the Gaussian curvature. Equations 4.9 and

4.10 can be used to predict the scattering at a field point if IS is

assumed to be equal to the incident intensity (i.e., total reflection,

such as at a rigid plane baffle).

Calculation of the Gaussian curvature for a prolate spheroid using
the methods of differential geometry (see Salmon; 1927, p. 41l1) is
somewhat lengthy but straightforward. If the spheroid is assumed to

have its major axis oriented along the z direction 1in an r, 30’ eo

spherical coordinate system, the resulting expression is

az(sin 60 cos2 Py = cos 60 sin 7o COs QO)
G = . (4.11)

2 2 2 .2 2
sin eo(b cos eo + a” sin 60)

All the experimental data of this chapter are recorded in a single plane
containing the major axis. Thus, one can assume that the rotation angle
@0 is zero, reducing the previous expression to

z

2 — - (6.12)

((b cos eo)2 + (a sin 90)")“

G =

Note that 60 now corresponds to the ¢ of Figure 4.10.
Evaluation of Equation 4.9 with the dimensions used in some of the

spheroid experiments indicates that s is not large enough to permit the

A
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use of the simplified expression for large ranges (Equation 4.10Q).
Consequently, it 1is necessary to obtain the two principal radii of
curvature independently. One of these radii for all the cases under
consideration is just the radius of curvature of the ellipse, which is
easily calculated from the parametric form of the ellipse in Equation
4.6 (see, for example, Buck, 1965, p. 318):

((b cos ¢)2 + (a2 sin ¢)2)3/2

. 4.1
°y ) =5 (4.13)

The other principal radius of curvature can then be obtained from the
Gaussian curvature:

b{(b cos 9)2 + (a sin ¢)2]l/2

02 = 3 . (4.14)

-

A purely geometric prediction of the backscattered directivity from
a spheroid was obtained by computing the specular points for a group of
incidence angles, finding the two principal radii of curvature at those
points, and substituting into Equation 4.9. The result for hio = 176 is
plotted in Figure 4.11 along with the equivalent experimental cuive.
Note that the geometric curve has been normalized by matching with the
backscattering from a reference sphere that has the same Gaussian
curvature. The agreement between the curves of Figure 4.l11 1is quite
good, and it would be even better if the geometric curve were lowered
about 2 dB relative to the experimental curve. (Accunulated
experimental errors in the normalization could account for this

discrepancy.)
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Interpretation of the agreement in the data of Figure 4.1l is not
straightforward because of the difficulty of finding a typical dimension
for a thin spheroid. At broadside incidence, the two principal radii of
curvature are 98 inches and 2 inches; and, using them as a
characteristic dimension R, one obtains kR’'s of 1230 and 25,
respectively. The choice of which (or what combination) of the two
dimensions to use is not obvious, but both quantities are fairly large.
Because the geometric prediction represents the high-frequency limit,
the good agreement between theory and experiment is not surprising.
However, at axial incidence, the two principal radii both become .29
inch, leading to a kR of 3.6. In this case, the single radius of
curvature is only about half of a wavelength in dimension. To add to
the confusion, theoretical computations by New, Andrews, Brill, Eisler,
and Uberall (1974) have shown that the predictions for thin spheroids
from the geometrical theory of diffraction (an extension of geometrical
optics) are valid only at very high frequencies (i.e., hio Z 575 for a
10:1 prolate spheroid).

Figure 4.12 is a comparison of the geometric and experimental
backscatter from a larger prolate spheroid (hi0 = 261). In this case,
the two principal'radii of curvature at broadside 1incidence are 147
inches and 3 inches (kR’s of 1847 and 38), and the radius at the tip is
.43 inch (kR = 54). The agreement between theory and experiment is
slightly worse than the previous result (Figure 4.11) in the rapid
transition region, but it 1is better at both broadside and axial

incidence.
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One should remember that experimental constraints limited the
spacing between the transducers and the model, especially when using the
large (42-inch) spheroid. Thus, the geometric prediction is sensitive
to the choice of a separation distance T that is used in the specular-
point calculation of Equation 4.8. The true surface normal in Figure
4.10 intersects the source-receiver axis between the source and receiver
swh that the angles between the normal and both the incident (Rl) and
reflected (R2) paths are equal. The results shown in the two previous
figures assume that the normal intersects a point that is centered
between the source and receiver. A preliminary analysis of the data
showed that predictions wutilizing this last approximation came as much
as 3 dB closer to the experimental curve in the regions of maximum slope
than results which assumed that the normal passed through the receiver.
To further improve the prediction, the change in total propagation path
that occurs when the specular point gets closer to the transducers was
also considered. In addition, a correction was added to compensate for

the directivity of the source, but this factor never exceeded 1 dB.

4.3 Prolate Spheroid with Small Surface Discontinuities

4.3.1 Effect of Surface Imperfections

The prolate spheroid is an interesting model because of its smooth
contours and its double variation in surface curvature. Data already
presented in this chapter have shown that this combination of factors
leads to relatively 1little backscactering at all incidence angles

differing from broadside incidence. In order to test the importance of




[
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this smooth curvature, it 1is useful to examine the effect of small
surface anomalies and discontinuities on the backscattered directivity.

One example of a surface anomaly can be seen in the oscilloscope
trace that is shown in Figure 3.5 (on page 92). In the group of three
returns following pulse B, the center return originates at a 3/4-inch-
diameter mounting hole cut partway through the center of the spheroid
along the minor axis of the generating ellipse. From a geometrical-
optics point of view, this hole should have no effect because the
incident field cannot "see" it. Despite this fact, a return from the
hole is clearly distinguishable; but its amplitude is about 10 dB below
the already small specular return from the spheroid (pulse B).
Consequently, the contribution of this hole to the spheroid’s
backscattering can be neglected. The hole does appear to have a more
prominent effect on the local surface field, which is discussed in the
following section on cylinder obstructions (Section 4.4).

The effect of a surface anomaly in the illuminated area at the
critical tip region is illustrated in Figure 4.13. Because of repeated
use over a long period, the 28-inch wooden spheroid has acquired a dent
approximately 1/8-inch deep near one tip. Thus, the backscattered
directivities from both the good and dented noses of this model were
compared. Even though the dent is small in relation to the dimensions
of the model, it has a major effect on the backscattering at incidence
angles as large as 50°. This result again shows the importance of the
surface curvature, especlially the curvature in the tip region. It also
indicates that great care wmust be taken in constructing and handling
spheroid models, and that spheroid results should only be applied to

objects of very similar shape.
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4.3.2 Effect of Thin Band Obstructions

As a further investigation of anomalies on the surface of a
spheroid, it is interesting to examine the effect of thin bands on the
surface in a plane perpendicular to the axis of revolution. Figure 4.14
shows the result from a band of corduroy damping material about .25}
thick placed around the 28-~inch spheroid. The position and width (about
1 inch) of the band make its absorptive effect on the backscattered
directivity very small. However, the band does produce an additional
scattering component from the leading edge of the fabric, as was seen in
the previous data for damped spheroids (see Section 4.2.3). This
additional component peaks at axial incidence, the point at which the
band forms a scattering surface that 1is parallel to the wavefront but
also of rather small thickness. The 1large amplitude of the peak lends
support to the notion that the length dimension of a long thin scatterer
largely compensates for the small thickness dimension in determining the
backscattering. Recall that a similar conclusion was drawn about the
support wires used to suspend the models (see Section 3.3).

Because the illuminated surface of the band of Figure 4.14 1is
parallel to the incident wavefront, a specular scattering wmechanism
cannot be ruled out--even when the small thickness dimension 1is
considered. Thus, a smooth sloping section was carefully formed in
front of the band using a dense modeling clay, and the backscattered
directivity was measured again (see Figure 4.15). In this case, any
specular component should be directed away from the receiver. The plot
indicates a reduction of about 3 dB in the scattering by the band at

axial incidence. At other angles, however, the scattering is about the
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same as that of Figure 4.l4. A different result was observed when the
damping strip was removed to leave only the clay sloping section, as is
shown in Figure 4.16. In this case, the scattering by the remaining
clay band 1is significantly worse than that observed from the corduroy
strip in the range of 0° - 30°, apparently because of the sharp rigid
termination of the remaining section of the band. (This is similar to
results obtained with cone models discussed in Section 5.4.1.)

An investigation into the effect of the band’s thickness was also
performed by wrapping various numbers of rubber bands around the surface
of the 42-inch spheroid. Figures 4.17, 4.18, and 4.19 show the results
of bands with thicknesses of .063\ - .25A placed around the nose of the
spheroid. The thinnest band (.063A) has very little effect on the
backscattered directivity except for a 5 dB peak <close to axial
incidence (Figure 4.17). The bands having the next two graduated
thicknesses (.13X and .19)), however, add substantially to the
backscattering by the spheroid over a wide range of incidence angles
(Figure 4.18). Finally, the thickest band (.25)) produces only a small
additional increase (Figure 4.19). The smallest band appears to be so
thin that it is partially hidden by the surface field on the spheroid;
however, the rapid increase in scattering caused by the bands seems to
have stabilized to perhaps an area-proportional increase at the
thickness of the largest band. Note that, even though the largest band
is only .25) in thickness, the resulting backscattered directivity for a
broad angular range near axial incidence 1s increased (over that of the
plain spheroid) to almost the level from the spheroid at broadside

incidence.
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The same group of bands was also applied to the spheroid at its
center to see if the effect of the spheroid is the same there. In
comparing these results with the previous examples of bands near the tip
of the spheroid, one must remember that the different location of the
band relative to the source and receiver can be expected to reduce the
backscattering levels by about 4.5 dB because of additional propagation
losses. Figure 4.20 shows that the thinnest center-located band (.063%)
again has no additive effect on the backscatter from the spheroid except
for the peak at axial incidence. Figure 4.21 shows that the next two
sizes of bands (.13X and .19A) produce a substantial increase in the
scattering, while the thickest band (.25A) produces an asymmetric effect
that may indicate a somewhat larger increase than that observed in the
equivalent case with the bands at the spheroid tip. Note that only the
distinct portions of the curve associated with the thickest band have
been plotted to reduce clutter in the figure. Allowing some margin for
slight positioning errors with the bands, the backscatter results for
center~located and end-located bands are about the same. The differing
angular ranges over which the bands increased the backscattering from
the spheroid indicate that the band return is probably present as a
distinct echo over a wide angular range; however, the echo from the band
is only evident when the amplitude of this return exceeds that of the

return from the spheroid itself. (The largest return at a given

incidence angle is detected by the receiving circuitry.)
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4.4 Prolate Spheroid with Cylinder Obstructions

The results of the previous section for bands around a prolate
spheroid illustrate, at least qualitatively, the dramatic effect that
discontinuous obstructions on the smooth surface of a spheroid can have
on the backscattered pressure. In order to get a more complete
quantitative view of the phenomena, an investigation of small cylinders
placed on a spheroid was also performed. The <cylinders are wuseful
because both their length and diameter can be varied. They can also be
easily studied both on and off the spheroid for comparison. The
cylindrical models wused in this investigation coansist of a set that
includes all combinations of the lengths of 1/8, 1l/4, 1/2, 3/4, and l
inch and the diameters of 1/8, 1/4, 1/2, and 3/4 inch. The cylinders
are all machined to high precision (1.001 inch) out of drill rod.

The cylinders were positioned in a vertical orientation along the
top of the horizontally suspended spheroid with the circular base of the
cylinders against the spheroid’s surface. A line indicating the linear
distance from the center of the spheroid along the major axis was drawn
on the surface as a guide. For those cases in which the cylinders were
placed near the ends of the spheroid, the cylinders were tilted somewhat
from the vertical because of the curvature of the surface. This tilt
only affected the data for the longest cylinders, for which the
microphone was no longer centered in the main vertical-plane lobe of the
cylinder scattering pattern. A gating technique was used to separate
and record only the component scattered by the cylinder. This procedure
was straightforward for cylinder positions away from the spheroid nose

because the spheroid’s backscattering component came exclusively from

e "
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the specular point at or near the nose. For comparison, data was
recorded with the c¢ylinders suspended at the same position without the
spheroid present. Support in these cases was provided by two fine nylon
threads (removed from a piece of braided fishing line) passed through a
tiny hole coincident with the axis of the cylinder. Again, a slight but
inconsequential tilt from the vertical was present with the longer
cylinders.

A fairly extensive investigation was performed of both monostatic
and bistatic scattering at 23 kHz from the cylinders themselves and from
the cylinders at various positions on top of the 28-inch prolate
spheroid. The data are summarized in the following sections. Unless
otherwise stated, the curves are normalized to the return from a sphere
with the same major radius as the spheroid (14 inches). Because the
wavelength at the frequency used is about .6 inch, the cylinders are all
of the order of a wavelength in dimension. Note that the backscatter
data from the 1/8-inch-diameter cylinders have been omitted because they
were too close to the background noise level to provide any wuseful

information. A more complete study of the cylinders themselves

(reported in Section 5.3) was also made at a slightly higher frequency.

4.4.1 Total Backscatter from Cylinders and Spheroid

Before examining the effects of the spheroid on the scattering from
cylinders, it is interesting to note the added effect of the cylinder
contributions to the pressure backscattered by the spheroid. Figure
4,22 shows the results obtained when 3/4-inch-diameter (l1.3)X) cvlinders

with lengths of 1/4, 1/2, and | inch (.4\, .85%, 1.7\) were placed at
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the center of the 28-inch 7:1 spheroid. The 1/4-inch-tall cylinder has
a return that is below that of the spheroid, even at axial incidence.
Thus, this curve is the same as that from the spheroid alone. The two

larger cylinders, however, backscatter more than the spheroid for

incidence angles as large as 30°, Their echo component dominates in
this angular range, increasing the total backscatter by as much as 10 dB
over that from the plain spheroid. This result is contrary to one’s
initial intuition because the cylinders are so small relative to the
size of the spheroid. Furthermore, the cylinder return would increase
another 7 dB if the cylinders were placed at the illuminated tip of the
spheroid (the origin of the spheroid component) because of the smaller

propagation-path losses.

4.,4.2 Effect of Cylinder Location

Figure 4.23 illustrates the effect that a spheroid oriented at
axial incidence has on the backscatter from a cylinder placed at various
positions along the spheroid surface. The abscissa of the graph is the
distance in inches from the center of the spheroid to the cylinder axis
(with positive values toward the source and receiver), measured along a
line parallel to the major axis of the spheroid. Data are presented for
cylinders 3/4-inch (1.3A) in diameter and l/4=, 1/2-, and l-inch (.4A,
«85X, 1.7X) in length. Note that offsets have been applied to the data
in twe of the curves to separate them on the graph.

All three cylinders of Figure 4.23 backscatter significantly more
pressure (than the cylinder alone) when placed on the spheroid forward

of a point about 4 inches behind the spheroid’s center. The relative
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increase (compared to the cylinders alone) appears to be greater for the
shorter cylinders. As the cylinders are moved further away from the
illuminated tip of the spheroid, the backscatter drops below that of the
freely suspended cylinders. The downturn in the curves for the l-inch-
tall and, to some extent, the l/2-inch-tall cylinders at positions near
the front of the spheroid is caused by the tilting of the cylinders and
their scattering pattern as they fest on the steeply curved surface.
The lines representing the backscatter from the freely suspended
cylinders ;re actually matched to experimental data only at the center
position along the spheroid. At other positions, they are computed
using the ratio of the distances to the measured and computed points
from the source and receiver. The validity of this approach was.
verified experimentally for several of the cylinders, including the
largest and smallest (see, for example, Figure 4.24).

The differences noted in rhe backscatter data from one cylinder to
another are related primarily to the variation in the length of the
cylinders, as can be seen in Figure 4.25. The situation examined in
this case is 1identical to that of Figure 4.23 except that 1/4-inch-
diameter (.4A) cylinders were used. Results from these two cases
compare closely except for a drop of about 5 dB in the returns from the
thinner cylinders. One is therefore led to postulate the occurrence of
a partial baffling effect caused by a surface field that forms at or
near the illuminated tip of the spheroid. In other words, the intensity
of the incident field that occupies the area of the spheroid projected
toward the transducers appears to be deflected and concentrated around

the surface of the model.
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As a further investigation, the effect of cylinders on a spheroid
that is oriented for incidence 20° from the axial position was examined.
The results for 3/4-inch-diameter cylinders are shown in Figure 4.26.
In this case, the boost 1in the cylinders’ backscatter caused by the
spheroid is still observed. However, the slope of the scattering level
in relation to the position on the spheroid is noticeably less than it
was for the case of axial incidence. The curves for «cylinders on the
spheroid now almost parallel the curves for freely suspended cylinders.
Thus, a partial baffling effect is noted even for cylinders positioned
near the rear of the spheroid. Again, the corresponding results for
1/4-inch-diameter cylinders were the same except for an overall decrease
in amplitude of about 5 dB.

One other effect that appears to support the idea of a surface
phenomenon was noted during this investigation. A few results were
obtained using the 42-inch spheroid, such as the plot of Figure 4.27.
This result is similar to that obtained with the smaller (28-inch)
spheroid, and backscattered returns from both the spheroid and the
cylinder were clearly observed at all measured positions. Nevertheless,
because of the large size of this model and the close microphone
spacing, the cylinder is completely hidden (in a geometrical sense) from
the microphone for all spheroid positions behind the one at -3 inches.
It is also completely hidden from the speaker for positions behind about
=10 inches. The spheroid surface appears to direct both the incident
and reflected fields into the respective shadow regions. Note that the
reference level (0 dB) used in Figure 4.27 is the backscattering by a

l4-inch cylinder instead of that by the 2l-inch cylinder appropriate for
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this spheroid; this reference was chosen to match the other resul:zs of
this section. The configuration for the 28-inch spheroid was selected
to insure that even the smallest cylinders were not hidden except at the

most extreme rear positions on the spheroid.

4.4.3 Effect of Spheroid Incidence Angle

Another parameter that might be expected to influence the
scattering from obstructions on a spheroid is the incidence angle on the
spheroid. Figure 4.28 shows the effect c¢f this parameter on the
backscatter from 3/4-inch-diameter (1.3)) cvlinders with lengths of 1/4,
1/2, and 1 inch (.44, .85), 1.7)) placed on top of the 28-inch prolate
spheroid at its centep. Just as was done in the previous section, the
curves for the two smaller cylinders have been offset by 5 dB 1d 10 dB,
respectively. An increase in the backscattered pressure over that of
the freely suspended cylinders is noted for all the cylinders at axial
incidence, and an even greater boost 1is noted as the incidence angle
moves from axial incidence to about 20° incidence. At larger incidence
angles, the level of the backscatter from the l-inch cylinder on the
spheroid dips toward the corresponding level of the freely suspended
cylinder; the results from ULoth shorter cylinders on the spheroid
maintain the relative gain in level for angles as large as 50°. An
identical trend is found in the corresponding data for the 1/4=inch-
diameter (.44) cylinders of Figure 4.29. All the curves in Figures 4.28
and 4.29 exhibit a noticeable dip (actually a smaller increase in level
over that from the cylinder alone) at axial incidence, and the relative

difference between the levels at 0° incidence and, for example, at 20°
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incidence appears to increase as the length of the cvlinder decreases.
This may be caused by a damping effect at axial‘incidence that works
against the baffling effect but adheres more closely to the spheroid
surface.

The situation changes when the cylinder is moved closer to the
front of the spheroid, as is illustrated in Figures 4.30 and 4.31. In
these cases, little or no dip is noted in the level of the backscatter
from the c¢ylinders on the spheroid at axial incidence. The relative
difference between the levels for cylinders on and off the spheroid is
about equal to the maximum difference attained for cylinders at the
spheroid center (Figures 4.28 and 4.29) over a wide range of spheroid
incidence angles. Again, this difference tends toward zero at angles of
about 10° or larger with the l-inch-tall cylinder only. On the
contrary, the dip in the level of backscattering noted in the previous
example at axial incidence 1is exaggerated when the cylinder 1is moved
closer to the reép“of the spheroid (see Figures 4.32 and 4.33). In
fact, the backsc;éter at axial incidence is now less than that for the
freely suspended cylinders. At other angles, a substantial increase in
the level is noted for all but the l-inch-tall cylinder. There are some
differences in this case between the data for the 3/4~inch-diameter
cylinders (Figure 4.32) and the data for the l/4-inch-diameter cylinders
(Figure 4.33). However, these differences are small and may be

partially caused by the poor signal-to-noise ratio experienced in this

case with the smaller cylinders.
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4.4.4 Effect of Spheroid on Cylinder Bistatic Scattering

The <final variable investigated in this studvy of cylinders on
spheroids is the change in the bistatic scattering pattern. Figure 4.34
shows the results obtained from three of the 3/4-inch-diamet-r (1.31)
cylinders, and Figure 4.35 shows the results from the corresponding
l/4-inch-diameter (.4)) cylinders. In both cases, the sound field is
incident axially on the spheroid, and the cylinders are on top of the
spheroid at its center. The scattering from the freel§ suspended
cylinders is uniform over the entire angular range, as would be expected
from the circular symﬁétry in the measurement plane. The scattering
from the cylinders on the spheroid is slightly larger, not only for
backscatter, but over most of the angular range. Note that a small dip
is indicated in the backscatter direction (0°). 1In general, the uniform

increase in scattering by the cylinders with the spheroid present

supports the idea of an increased incident-pressure level near the

surface of the spheroid. The effective increase in level exhibited by

the tallest (l-inch) cylinder is diminished at angles greater than about
30°.  Finally, the results for both 3/4-inch- .and 1/4-inch-diameter
cyiinders are largely the same, just as was found in Section 4.4.3.
 Similar effects are nofed for the bistatic scattering from
cylinders on a spheroid at éther incidence angles. Figure 4.36 presents
resqlts for three 3/4-inch-diameter c¢ylinders on a spheroid at 20°
incidence, and Figure 4.37 gives similar results for 45° incidence on
the sphéroid. The increase in the cylinder scattering provided by the
spheroid in both of these cases is somewhat larger than that noted in

the previous paragraph at axial incidence. In addition,'the dip in the
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curve nas aoved to approximately the angular position of the spneroid
axis (i.e., 200 or 459), This last observation indicates that the
physical phenomenon that causes the dip takes effect after the pulse is

reflected by the cvlinder.

4.4.5 Effect of Hole in Surface of Spheroid

When the investigation of cylinder obstructions on a prolate
spheroid was first performed, a significant amount of unplanned effort
went into the study of a 3/4-inch-diameter hole at the center of the
spheroid along the top. This hole served originally as part of the
support for the spheroid model. Because it had no significant effect on
the backscatter (see Section 4.3.1), the hole was left open for many of
the early experiments. The cvlinder obstruction tests, however, showed
that the hole has a significant effect on the surface field in its
neighborhood.

Figure 4.38 is a sample of the results obtained for backscatter
from cylinders (3/4-inch 1in diameter) at positions along the top of a
prolate spheroid, both with and without the hole at the center of the
spheroid. The hole has very little effect on the data for the l-inch-
tall cylinder. However, for both shorter cylinders, a significant dip
appears in the curve at a position just behind the hole; at positions
even further behind the hole, the curve returns approximately to the
level observed without the hole (see Figure 4.23). when smaller
diameter cylinders are used, the effect is even more dramatic, as Tigzure
4.39 shows for l/4-inch-diameter cylinders. In this last case, tne

is present even with the l-inch-tall cylinder, and it exists s ver . -,
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larger range of cylinder positions than was observed with 3/4-inch-
diameter cylinders.

The effect of the hole is not fully understood. The strong
dependence on cylinder diameter may indicate that the width of the
hole’s influence 1is fairly narrow along the surface of the spheroid.
There is also evidence that a resonance phenomenon is involved. For
example, Figure 4.39 indicates that the hole exerts its strongest
influence with a 1/2-inch-tall cylinder. Also, Figure 4.40 shows that
the depth of the hole must be considered. Despite these indications, no
definitive relationship could be found between the dimensions of the
hole and a simple numerical factor of a wavelength. Plots of cylinder
backscatter at various spheroid incidence angles (Figures 4.41 and 4.42)
show that the influence of the hole 1is apparently limited to axial or
near-axial incidence. The hole’s effect is definitely localized in the
nearfield, at which the pressure distribution is known to take on
complex forms. Unfortunately, this effect must apparently be considered
even when evaluating the farfield results 1if there is an obstruction ov

other feature of the model near the hole.

4.5 Bistatic Scattering from Prolate Spheroids

Although this investigation focused on the backscattering at
spheroids and spheroids with projections, it is sometimes useful, at
least in an intuitive sense, to examine the field scattered in other
directions. The spheroid is interesting in this respect because its
backscatter varies significantly with the aspect angle. In addition,

the backscattered returns are known to be highly collimated in some
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1638
directions. The observation of these phenomena provided the impetus for
a brief study of the bistatic scattering from a spheroid in a plane
containing the spheroid axis, the receiver, and the source. In all
cases, only a specular-type of echo return was observed. Note that the
origin of the scattering angle in the plots is the direction of the
backscatter, as opposed to the more common forward-scattering reference.

Figure 4.43 presents the results of the bistatic scattering by a
spheroid at axial incidence. Except for some variation near 09, the
pattern has the uniform shape expected from a sphere. This 1is not
unusual because the spheroid surface at the tip has two equal principal
radii of curvature just 1like a sphere. However, the similarity is
evident for fairly large angles. The variation near 0° is similar to
the corresponding backscattering data obtained with this same spheroid
model (see Figure 4.12); thus, it may be caused by slight imperfections
in the model itself.

Figure 4.44 gives the bistatic scattering results for the opposite
extreme of broadside incidence. The pattern consists of a single broad
lobe. This pattern is somewhat unusual because the model is over 80
wavelengths long. A flat radiator with this large extent would have a
much narrower center lobe. Despite the large eccentricity, however, the
prolate spheroid still possesses much of the same circular symmetry as
its near cousin, the sphere. In addition, the spheroid has no abrupt
edges like those found on a flat radiator.

Figures 4.45, 4.46, and 4.47 complete the picture by showing the
bistatic scattering from the spheroid at every 10° increment between the

extremes of axial and broadside incidence. There are no surprises in

K gt
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these data. As the incidence angle is increased, the pressure scattered
on the shadowed side of the spheroid decreases, while the broad lobe
seen at broadside incidence appears at the position predicted by
specular scattering considerations. The reason for the rapid shift in
the backscattgr from a spheroid (noted 1in Section 4.2.2) for the range
of 30° - 60° is seen 1in Figure 4.46. In this figure, the large lobe
moves rapidly toward the 0° direction as tne incidenée angle approaches
90°. When interpreting these resuits, one should note that experimental
considerations (mostly restricted space in the measurement chamber)
limited the model-to-receiver separation. The simplicity of the effects
observed at this close spacing, however, implies that the farfield
results are not too much different. The lack of evidence of collimated
returns is merely an indication that this effect is only observed in

planes other than the one containing the spheroid axis.

4.6 Creeping Waves

The only scattering phenomenon that has been observed with smooth
bodies in the results described in previous sections is specular
scattering. In particular, there has been no evidence of the Franz-type
creeping waves that figure prominently in many theoretical formulations.
Because of the importance of these creeping waves to diffraction theory
and because of the controversy over their existence, a highly targeted
effort was mounted to study these effects.

For the creeping-wave experiments, it was necessary to compute the
predicted time and amplitude relationships of the «creeping-wave return

and then to manipulate the instrument configuration until an adequate
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signal-to-noise ratio was obtained in that time window. This
verification technique can, unfortunately, lead to self-fulfilling
predictions while missing unexpected effects; but the poussible

difficulties were minimized as much as possible by wusing the knowlcdge
of scattering effects reported in previous sections of this chapter.
The results of the investigation generally support the concept of a
scattering component that circumnavigates the surface of the scatterer.
However, some of the observed occurrences are difficult to relate in
terms of the properties customarily assigned to creeping waves (sece,
for example, Levy & Keller, 1959). In every case examined, the
significance of the creeping-wave effects 1is small in comparison with
other scattering phenomena.

Note that all the data values presented in this section were
obtained by reading the height of the positive peak of the received
pulses directly from an oscilloscope. Since slight changes in waveform,
nearby returns, and background noise complicated this procedure, an
error of 2 dB or more in the amplitude of the effects may be present at

some points.

4.6.1 Creeping Waves on Smooth Spheres and Spheroids

Figure 4.48 shows an oscilloscope trace of both the incident and
backscattered pulses from a sphere at ka = 6. The waveform is limited
to a single sine-wave cycle in order to isolate the different
backscatter components in time. The specular return and a small (about
10% of the specular return) creeping~wave return about 400 microseconds

later can be seen. Both the amplitude and time relationships between
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Figure 4.48 Oscilloscope trace of the backscattering from a sphere at
ka = 6, including (a) the incident pulse at the sphere and
(b) the specular and creeping-wave returns.
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the two backscattered returns are consistent with predictions of the
Keller theory if the creeping wave is assumed to travel at about 95% of
the wave speed in air. Note, however, that the relative amplitude of
the creeping-wave component is very small--so small that it adds only an
insignificant contribution to the total backscattered field on a decibel
scale. This relationship 1s also evident in Figure 4.49, which is a
plot of the experimental backscattered returns from a sphere over a
range of ka’s near 6. The data are normalized to the level incident at
the center of the sphere with the sphere not present. As can be seen,
the specular returns are about 30 dB below the incident pulse, and the
creeping-~wave returns are lower than the specular returns by 20 - 30 dB.
Even though theory predicts that the creeping-wave returns will be
somewhat larger for 1lower values of ka, their influence on
backscattering appears to be minimal in practical situations.

Figure 4.50 presents results of the specular and creeping-wave
returns from a sphere at other scattering angles. Data obtained at two
different frequencies are shown, and the angle 1is measured from the
forward direction. The focusing effect of the geometric caustic at 180°
is clearly evident. Once again, however, the creeping-wave return is
very small. Even at the forward scattering angle of 80°, at which the
creeping wave presumably travels only a small distance on the sphere’s
surface, the creeping-wave term is still 10 dB below the specular term.

Creeping waves are predicted to play a major role in the scattering
from thin prolate spheroids. Before moving to the thin spheroids of
interest in this study, however, an examination was performed with a

slightly eccentric 2:1 prolate spheroid. Figure 4.51 shows oscilloscope
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Figure 4.51 Oscilloscope trace of the backscattered specular and
creeping-wave returns from a 2:1 prolate spheroid

(hEO = 13.5) at (a) axial and (b) broadside incidence.
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traces of the backscatter at both axial and broadside incidence on this
spheroid. The dimensions of the spheroid are such that hio = 13.5 and
kR = 6.7 (where R is the minor radius). The creeping=-wave return for
broadside incidence is just barely visible about 600 microseconds after
the specular return. At axial incidence, the creeping-wave return comes
later (about 800 microseconds after the specular return), but it is also
much stronger due to the axial focusing effect. The results at other
scattering angles for the case of axial incidence are plotted in Figure
4.52. Similar results for the sphere (ka = 6) described earlier in this
section are also included in the figure for comparison. The specular
return from the spheroid is virtually identical to that for the sphere,
but the creeping-wave return is lower (6% of the specular return). This
slightly eccentric spheroid has an interfocal distance that is close to
the diameter of the sphere used for comparison; and the spheroid’s
creeping-wave return was expected to be larger than that for the sphere,
based on the size of low-frequency oscillations in the frequency-
response curves of Hickling (1958). Note that, when the spheroid model
was rotated from axial to broadside incidence, a single (backscattered)
creeping-wave return was observed that began as the axial return (Figure
4.5la) and gradually shifted in time and amplitude to the broadside
return (Figure 4.51b). No change in waveform due to multiple path
lengths on the surface of the spheroid was observed at any angle.

Attempts to observe the creeping-wave return from a 7:1 prolate
spheroid proved to be very difficult, as is shown in Figure 4.53. Here,
one sees the incident pulse and the barrage of backscattered returns

that were observed with the best instrument configuration found. This

PR
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case 1is particularly difficult because the returns from this thin
spheroid at axial incidence are very small and because the creeping-wave
return follows the specular return by over 2 milliseconds. Despite the
large extraneous reflections, the two desired spheroid components were
effectively 1isolated in time (see Figure 4.54). A summary of the
component amplitudes at several scattering angles is plotted in Figure
4.55. Both the specular and creeping-wave returns are lower in
amplitude than those for the 2:1 spheroid, but the creeping-wave return
is still about 12 dB lower in amplitude than the specular return.
Theoretical results for this case indicate that larger creeping~wave
effects are expected. For example, the computations of Lauchle (1975b)
predict nulls of over 90 dB in the backscattered frequency response for
a thin (22:1) prolate sphercid; these nulls are generally thought to be
caused by interferences between specular and creeping-wave returns that

are virtually identical in level.

4.6.2 Creeping Waves on Spheres with Bands

In order to evaluate the surface-hugging properties of creeping
waves, an examination was made using spheres with bands applied to their
surfaces. For example, Figure 4.56 shows oscilloscope traces of the
backscattered specular and creeping-wave components from the sphere
(ka = 6) of Section 4.6.1 with two thicknesses of bands on its surface.
The bands are constructed of one or more rubber bands stretched around
the circumference of the sphere along the axis containing the source and
receiver. These bands effectively form a small, rigid, reflecting wall
on the surface of the sphere that intercepts all the surface rays at

some orientation,




®

F

il
A«—.T'-
SCALE < 4

L_['?V | msec /div—s=
(a)

®
- ~
<EL_____.T._E
e
SCALE — 4

.l msec/div —=

(b)

Figure 4.54 O0Oscilloscope trace of the backscattered (a)
(b) creeping-wave returns from a 7:1 prolate

hr: = 38.
0

specular and
spheroid at




///SPECULAR RETURN

CREEPING RETURN

Ve

1 | L | 1 1 1 I | L

70 90 120 140 160 180
SCATTERING ANGLE (deg)

Figure 4.55 Bistatic specular and creeping-wave returns from a 7:1
prolate spheroid. (hgo = 38)




122 WIDE
034 THICK,

v
%
AL

17in

SCALE O dB

B

A_CEJ,\, .lmsec/div —
(a)

.12\ WIDE
432 THICK

o
%m?_@

]
! @
| °
[
[ O
' w
‘ ' 4
: <
(&)
T
|
!
|
1
!
i ~ .imsec /div —
Figure 4.56 Oscilloscope trace of the backscattered specular and

creeping-wave returns from a sphere at ka = 6 with bands
having thicknesses of (a) .03 and (b) .13} oriented along
the source/receiver axis.




o

R

13

A single rubber band (.03% thick), shown 1in Figure 4.56a, has
virtually no effect on the backscattered returns. However, four stacked
rubber bands (total .13) thick) do attenuate the creeping-wave component
by about 2 dB (Figure 4.56b), as well as change its waveform somewhat.
These results are expanded in the plot of Figure 4.57. The figure shows
that even two rubber bands (.07A thick) have little or no effect on
either the specular or creeping-wave returns. However, the .i3--thick
band (four rubber bands) does attenuate the creeping-wave component over
all the angular range examined.

Figure 4.58 shows that the effect of the axial bands depends on
more than their height off the surface. The upper trace shows the
backscattered creeping-wave component attenuated to about half of the
level observed on the plain sphere by a .2X-thick band in the
source/receiver axis. However, if the sphere and band are rotated by as
little as 100, the attenuation disappears. In fact, as 1is shown in
Figure 4.59, the creeping-wave component is then boosted by about 3 dB
over that from the plain sphere for scattering angles as large as 70°.
Furthermore, this effect is not sensitive to the band’s incidence angle

o .
shows no change in the

because a change in angle from 10° - 40
backscattered returns. Note that the band still intercepts all the
surface rays, Jjust as it did when oriented on axis. Additional tests
with partial bands have led to the conclusion that the band must be
present at the antipole (focus point) on the sphere’s surface in order
for attenuation to occur. Figure 4.60 shows that an axial band that

surrounds the sphere as in Figure 4.58a with the addition of a 1/2-inch

gap at the antipole has no effect on the creeping-wave component.
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Correspondingly, a 3/4-inch-long (.65%) band of .l6A thickness at the
antipole attenuates the creeping-wave component by about 6 dB, while a
3/8-inch-long (.32)\) section of this band still manages a 4-dB
attenuation relative to the level observed with the plain sphere.
Similar effects have been noted with the 2:1 spheroid at axial
incidence; the 7:1 spheroid could not be tested in this manner because
of an insufficient signal-to-noise ratio.

Circumferential bands on a sphere have an even more dramatic eftect
on the backscattered field when oriented parallel to the incident
wavefront. Figure 4.61 illustrates these results for the same two
thicknesses of bonds as in Figure 4.56. Even though the single axial
rubber band at the antipole had no noticeable effect on the creeping-
wave component, the same band does generate a major specular return in
this perpendicular orientation (Figure 4.6la). The band’s return takes
the form of two closely spaced components that are 180% out of phase
with each other. In the case of four rubber bands (Figure 4.61lb), the
bands’ specular return is substantially larger than the sphere’s
specular return. A summary of the data at this perpendicular
orientation of the band is presented in Figure 4.62. The major effect
of the bands’ specular returns is clearly evident. In addition, one can
see that the creeping-wave component 1is actually increased for angles
near that for backscattering. Because the increase is not present at
wider angles, it must occur, not at the point of creeping-wave

formation, but rather at its reradiation point.
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4.6.3 Creeping Waves on Flattened Spheres

As a final test of the properties of creeping waves, a series of
experiments was performed using spheres that were cut to produce flat
surfaces on one side. This procedure was made feasible by the ready
availability of models that could be destructively modified--namely,
pool balls. The tests were designed to provide additional evidence (see
Section 4.6.2) of how closely the creeping waves follow the surface
geometry. Three different models were used, ranging from a sphere with
a slight depression to a model that was almost a hemisphere. They were
examined in four orientations, with the flat at the front, back, right,
and left as viewed from the microphone. Note that, because the single
model-support point was centered on the original sphere, the flattened
spheres did not always hang with their flat surfaces oriented at a true
vertical.

Oscilloscope traces of the backscattered specular and creeping-wave
components from the flattened sphere oriented with the flat opposite the
microphone are shown in Figure 4.63, The creeping-wave returns are
increased over those from the plain sphere without a noticeable change
in their waveform. In addition, components originating at the edges of
the flat are visible. A summary of the complete series of backscatter
data with both back and front orientations of the flat 1is presented in
Figures 4.64, 4.65, and 4.66., With the flat oriented toward the
microphone, the specular returns are boosted near 180° and reduced at
wider angles by the effect of the flat surface. The creeping-wave
component is also boosted by an amount proportional to the depth of the

flat, but only for angles in the vicinity of 180°. With the flat
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oriented on the side opposite the microphone, the <creeping-wave
component is increased in amplitude even more than in the previous case.
This increase is observed over the entire angular range. Curiously,
there is no jump in the creeping-wave return near the angles at which
the flat might be expected to prematurely discharge any energy in
surface rays at its edge. Finally, Figure 4.67 shows. that the creeping-
wave component can still be attenuated in the rear-oriented flat example
by placing a small band at the focus point on the model’s surface.

A similar summary of the results for left and right flat
orientations is plotted in Figures 4.68, 4.69, and 4.70. In these
cases, the specular return is again affected at wide angles when the
flat is on the side facing the microphone. However, only slight changes
are noted in the creeping-wave returns. Because these creeping-wave
changes are also somewhat inconsistent, they may depend on a more
precise alignment of the flat relative to the 1incident wavefrout than

was maintained in this experiment.
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CHAPTER 5

EDGE DIFFRACTION MEASUREMENTS AND THE FREEDMAN THEORY

The backscattering of sound by smooth bodies is dominated by simple
specular effects for wavelengths near and smaller than the scatterer
dimensions (see Section 4.2). Any other disturbance of the incident
field is apparently minimized by the smooth curvature. This fact,
coupled with observations of the dramatic effect of small obstructions
on a smooth body (Sections 4.3 and 4.4), has led to an experimental
investigation of discontinuous surface structures such as edges and
tips. This chapter presents the results of that investigation.

Three basic categories of models were examined in this part of the
study. First, scattering from the edge of plane baffles was examined,
as was the field aiéng the shadowed side of such baffles (with both
damped and undamped surfaces). Second, small cylinders were used to
observe the interaction of specular and edge contributions. Finally, an
adaptable cone that includes both spherical caps and spherical and
hemispherical terminations (see Section 3.3) was examined. This last
model exhibits surface discontinuities of several different orders for
examination.

A specific effort was made to choose models that test the validity
of the Freedman echo-formation theory. The Freedman prediction for
specular returns from a smoothly curved body has already implicitly been
verified in Section 4.2.4; the Freedman result corresponds to the
geometrical-optics prediction multiplied by (1 + l/ékzaz)l/z, and data

in Section 4.2.4 show that geometrical optics accurately predicts the
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backscattering by smooth bodies. (Note that ka must be less than .7 for
this multiplicative factor tc differ from unity by at least 10x or 1
dB.) However, the Kirchhoff assumptions, on which the Freedman theory
is based, are physically plausible in the case of smooth bodies. The
assumptions are questionable in the case of abrupt surface
discontinuities. The results of this chapter indicate that the
nonspecular Freedman predictions (and, by analogy, those of physical

optics) should be used only with care.

5.1 Scattering at the Edge of a Plarz Baffle

The first model examined in the edge-diffraction studies was one
end of a large rectangular baffle. The baffle was a 3 x 5-foot section
of 1/2-inch plywood suspended in the measurement chamber with its long
side vertical. The one vertical edge under study was carefully filled
with wood putty and sanded to eliminate most imperfections. It was long
enough to allow any end effects to be separated from the desired data by
time gating. This particular edge configuration is useful as a basic
indicator of all edge-type scattering phenomena. The frequency used for
the experiments was 21 kHz, giving a wavelength of .643 inch. Thus, the
edge was about 3/4\ in thickness. Note that, in order to avoid
directivity problems and perturbation of the field, a 1/8-inch Bruel &

Kjaer microphone was utilized for all the measurements.

5.1.1 Angular Distribution of the Field

The first sequence of baffle experiments measured the directivity

of the field gscattered by an edge. The edge of the baffle was
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irradiated from a direction perpendicular to the batffle, and a
microphone was swept radially about the edge at separation discances
from & inches to 30 inches in 4-inch steps. Figures 5.1, 5.2, and 5.3
summarize the angular results in the incident half-space. These curves
are normalized to the field at the microphone 1in the direct forward
direction (8 = 180°) without the baffle present. The curves show a
strong return that is slightly oscillatory for angles near and below 0°.
The amplitude then drops rapidly as O takes on larger positive values.
In this case, the incident pulse was eliminated by time gzating.
However, the baffle generated a specular contribution at angles near and
below 0° that could not be isolated from the edge contribution at the
shortest practical pulse 1length (.3 milliseconds). Based on the
amplitude of the oscillations in the data, the edge contribution must be
no mnore than 8 - 12 dB below the specular contribution. The edge
contribution decreases for angles away from 0° and also for larger edge-
to-receiver separations. The period of the oscillations in the
backscatter curve also changas witn receiver separation because of the
different path lengths that are created between the interfering returns.
Note that the apparent decrease in received amplitude observed for large
negative angles at the widest separation (Figure 5.3) is a result of the
loudspeaker’s directivity characteristics. In order to better compare
the data in the positive angular range, the curves have been plotted
together in a smoothed form in Figure 5.4. This figure shows some
evidence that the data approach a uniform level at large separation

distances.
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Figures 5.5, 5.6, and 5.7 summarize the directivity results from
the edge in the forward half-space. These curves look very similar to
the corresponding curves in the 1incident half-space, but they
nevertheless represent different physical effects. In the angular range
of 90° - 180°, the data represent the sum of an incident component and
an edge component, while the data 1in the shadowed region (180° - 270%)
are defined to be diffraction effects. The similarity between the
curves taken in the two half-spaces indicates that the specular
reflection from the baffle on the incident side is acting approximately
like the incident pulse on the forward-scattering side.
As a further evaluation of the field diffracted by an edge, Figures
5.5 = 5.7 compare the directivities obtained with and without a damping
material applied to the shadowed surface of the baffle. The material
used is the same ribbed corduroy that was used in the damped-spheroid
experiments with the ribs oriented horizontally (see Section 4.2.3).
Little or no effect from the damping material 1is observed until the
microphone gets fairly close to the surface of the baffle (i.e., for
angles in the vicinity of 270°). Note that the oscillations in Figure
5.7 at about 220° are caused by interferences with a pulse originating
at the opposite edge of the baffle from the tested edge. Finally, the
three damped-baffle curves are shown together (in a smoothed form) in
Figure 5.8. The steep transitions observed in this figure as the shadow
boundary is <crossed are very similar to those noted earlier in this
section, which occurred on the 1incident side of the baffle when the

reflected shadow boundaiy was crossed (Figure 5.4).
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5.1.2 Field Along the Shadowed Side of the Baffle

Based on the results of the previous section, a decision was made
to investigate the propagation of both incident and edge-generated
fields along the surface of the baffle. Such results are intuitively
useful for understanding the effects of surface impedance on diffraction
phenomena. They are also important, for example, to aid the
interpretation of the Malyuzhinets (1958) stationary-phase solution.
This solution vanishes for grazing propagation when even a small amount
of absorption is present along an infinite surface.

To perform the measurements, a translating device was rizged to
scan the l/8-inch microphone parallel to the surface of the baffle at a
fixed distance. Figure 5.9 shows the results obtained for grazing
incidence on the rigid baffle. The curves are all normalized to the
field incident at the edge, and they have been offset in 5 dB steps in
order to plot all on the same graph. As a reference, the field present
without the baffle (obtained by applying spherical spreading losses to
the field incident at the edge) is also included. The data obtained
with the baffle in place generally follow the slope of the data
determined without the baffle, but there are small shifts in the
relative levels at the smaller microphone-to-baffle separations. It is
interesting that this separation distance nust approach 6 inches
(approximately 9 wavelengths) before the effect of the baffle 1is no
longer visible.

Figures 5.10 = 5.14 present the data obtained for the field along
the baffle when different incidence angles were used. The results for

180° (grazing incidence) are the same as those of Figure 5.9. The
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results at the other three incidence angles were recorded 1in the
geonetrical shadow region and are thus associated with an edge-
diffracted field. The variations in incidence angle appear to impart
constant shifts in the field amplitude that are essentialily determined
Jery near the edge. Even at the largest distance away from the baffle
(Figure 5.14), the recorded curves appear to approach a common
asymptote, determined only by the incidence angle, as the receiver moves
deepar into the shadow and away from the vicinity of the edge. The
transition region near the edge grows larger as the microphone gets
further from the baffle because the pressure has more time to diffuse
into the shadowed region. At the larger microphone-to-baffle
separations and 120° incidence, interferences are observed because the
incident field (as well as the edge field) reaches the microphone at
locations near the edge.

When the shadowed side of the baffle is treated with damping
material, the field along the baffle is substantially different than
that described in the previous paragraph for the rigid baffle. Figures
5.15 = 5.17 show results obtained for grazing incidence at various
microphone-to-baffle separations., The damping material 1is the same as
that used with the damped spheroids (see Section 4.2.3). For reference,
a smoothed plot of the corresponding plain-baffle results 1is included
for each case presented. A significant attenuation (over the plain-
baffle case) 1is noted for a separation of 1/2 inch (Figure 5.15), with
somewhat less attenuation observed at a l-inch separation (Figure 5.16).
However, the field amplitudes are actually increased in some cases at

the larger separations of 2, 4, and 6 inches (Figure 5.17). The latter
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trend may be related to the fact that the damping material makes the
surface somewhat rougher than the surface of the plain barfle. Note
that the effect of the damping material does accumulate as the field
propagates over a greater length of material, but this accumulation does
not begin precisely at the edge.

The attenuation caused by surface damping 1is greater than any
presented yet for the edge-generated fields arising from incidence at
angles of less than 180°. Figures 5.18 - 5.23 compare the data for
damped and undamped baffles at 120° incidence and at various microphone-
to-baffle separation distances. The relative attenuation at the
1/2-inch distance (Figure 5.18) is more than double that discussed in
the previous paragraph for the corresponding grazing-incidence case.
Furthermore, this attenuation is noted at much larger distances froa the
baffle. A sizeable attenuation is observed at a distance as large as 6
inches (Figure 5.21), and a slight effect is noted even at an 18-inch
distance (Figure 5.23). The boost observed at some microphone~to-baffle
distances in the grazing-incidence case has no counterpart in this
series of data. Note that, for 120° incidence, the effect of the
damping material is noted much closer to the edge than was observed for
grazing incidence. In general, the effect of surface damping on a
diffracted field appears to extend out from the surface considerably
more than a wavelength.

The effect of different incidence angles on the attenuation of the
diffracted field along the baffle is presented in Figures 5.24 - 5.29 in
comparison with that presented previously for 1209 incidence. Note

that, while the degree of attenuation in the data does change with the
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separation distance, the relative differences between the data at the
three angles shown (60°, 909, and 120°) remains essentially the same.
Furthermore, these constant amplitude differences are the same as those
observed previously with the plain baffle (Figure 5.14). It appears
that the distribution of the diffracted field that is generated at the
edge is not sensitive to the incidence angle, except for a constant
multiplicative factor applied to the diffracted field at the moment of
its generation. This fact provides some justification for the use of an
edge diffraction factor that is not angularly dependent, for example,

with the Keller diffraction theory.

5.2 Backscattering from Rounded and Square Edges

The data to be described in this section resulted from an
investigation into the effect of edge width and shape on the field
backscattered by one edge of a large baffle. Two rectangular plywood
baffles with dimensions of 20 x 24 inches and thicknesses of 3/8 and 2
inches were constructed, in addition to a l/8-inch-thick fiberboard
panel of the same size. One of the 24-inch edges of each baffle was cut
and treated to form a square end; the other eige was either machined or
fitted with a half-cylinder to form a rounded edge. The baffles were
then suspended in the measurement chamber with the 24-inch edges
vertical in a manner that permitted rotating the baffles about a
vertical line through their centers. For purposes of comparison, three
24-inch-long cylinders with the same diameters as the edge widths were
also obtained. Most of the data collected 1involved backscattered
directivities for the two types of edges (i.e., rounded and square) and

the cylinders at a frequency of 27 kHz (A = 1/2 inch).
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Figure 5.30 is a plot of the directivities obtained from the
thinnest edge (.25X). The data have been normalized to the broadside
return from a 20 x 24-inch baffle (i.e., a large flat baffle). The
curve shown for the cylinder was measured at an incidence angle of 0°
(for the baffle) and then adjusted for the change in propagation paths
from the transducers to the baffle’s edge as the baffle 1is rotated.
Spherical spreading on the incident path and cylindrical spreading on
the return path were assumed, but the corrections were small enough to
be insensitive to any inaccuracies in these assumptions. Note that the
returned levels from the rounded edge and the c¢ylinder are essentially
the same at all the measured angles (i.e., at all angles for which the
edge contribution could be distinctly separated from any others). For
this edge thickness, the square edge also produces similar results.

As the edge approaches the size of the wavelength, changes are
observed in the directivity. Figure 5.31 presents the results for a
.76 A-thick edge. Here, the square edge behaves quite differently from
the rounded edge. Moving to the largest edge (4A in thickness, Figure
5.32), the square edge then exhibits the lobed pattern that is expected
when interferences occur between returns from multiple scattering points
(in this case, the two parallel edges). On the contrary, the results
from the rounded edge and the corresponding cylinder are about the same
for all three thicknesses of edge. This probably results from the fact
that a specular mechanism, depending only on the local curvature at the
specular point, 1is dominant. The data of Figure 5.33 show that this
cylinder/rounded-edge similarity is present, at least for 0° incidence,

over a wide range of frequencies. The combination of the three curves
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in the plot shows good agreement over a xd (d = diameter) range of apout
.9 to 28.

The Freedman theory provides a formal nethod for separating the
individual scattering features of a particular body and for predicting
how they will interact. Thus, while theoretical examination of the
specular-dominated, rounded-edge case will provide little new intuitive
information about this theory, the square-edge case is ideal for study.
A Freedman analysis was performed for the square edge, treating it as a
thin rectangular baffle (see Section 2.4.3). The results are plotted in
Figures 5.34 - 5.36, Note that the shape of the predicted directivities
agrees very well with the experimental results, even for the thinner
edges. This agreement is excellent at 0° incidence but deteriorates
somewhat as the incidence angle increases. However, the relative level
of the predicted values have had to be adjusted upward by 13 - 15 dB in
order to obtain this agreement.

There are several possible explanations for the discrepancies in
the absolute levels of the predicted and experimental data. First, as
mentioned near the beginning of this section, the data were all
normalized to the field backscattered by a large rectangular baffle.
This 1is probably not the best choice for a reference. A Freedman
computation of the directivity from the reference baffle indicates a
primary lobe with a 3-dB width of less than 1° and a first side lobe
about 14.5 dB lower 1in amplitude than the main lobe. Even though the
baffle was manipulated for the peak return, an experimental error in the
measurement of this highly directive return cannot be ruled out.

Second, a problem with the Freedman predictions at close ranges may be
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indicated. The computed values for backscatter from the edge rise in
direct proportion to the frequency, but this rise {s inconsistent with
the experimental data plotted in Figure 5.37. The edge in this case is
5-feet long and 1l/2-inch wide. Note that little wvariation with
frequency is observed over a 5-to-l change in ka. This time the data
are normalized to the field incident at the edge with the edge not
present. The Freedman predictions for this edge are larger than the
scale of the figure, ranging from 4 dB at ka = | to 18 dB at ka = 5; the
predicted backscattered returns are now greater than the incident field.
Similar errors in the Freedman predictions have been observed in other
experiments in this study when the dimensions of the scatterer are equal
to or greater than the scatterer-to-microphone separation, but
reasonable predictions are obtained when the scatterer is much smaller
(see, for example, the data from small cylinders in the following

section).

5.3 Backscattering from Small Cylinders

The finite cylinder is a simple but intuitively interesting

scatterer. Its scattered field can be logically divided into two
contributions: an end component and a side component. Both of these
components generate fields similar to that of the rectangular edge
examined in the previous section, and these two fields interact to form
the final result. The side component is dependent largely on the length
of the cylinder, while the end component depends on the area of the
circular disk. For these reasons, a fairly extensive investigation into

the ba-kscatter from small cylinders was performed.
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The models were high-precision, rigid c¢vlinders wmade out of
machined drill rod. Twenty individual models 1in lengths 5f 1.3 to |
inch and diameters of 1/8 to 3/4 inch were made. For the nmeasurements
reported in this section, the cylinders were suspended horizontally bv a
nylon thread through a small hole in the center axis of the cylinder.
The thread consisted of two strands from a piece of braided fishing
line. A frequency of 27.6 kHz (A = 1/2 inch) was used for most of the
data, making all of the cylinders close to a wavelength in dimension.
Since the data in this transition region do not vary consistently as the
data in either high- or low-frequency regions, a significant portion of
the measured data have been included here. The pulse length of .8
milliseconds was relatively long for these small cylinders. Note that
the same cylinders were examined as obstructions on the surface of a
prolate spheroid (see Section 4.4).

Figures 5.38 and 5.39 present the results obtained for the
backscattered directivity from 3/4-inch-diameter <cylinders in five
separate lengths from 1/8 to 1l inch. The data are normalized to the
field incident at the center of the cylinder without the c¢ylinder
present (as are all the data of this section). For angles near axial
incidence, where the end component common to all of the cylinders can be
expected to dominate, all the curves overlap. However, for angles
greater than about 20°, the influence of the different side lengths can
be seen. The number of nulls visible in the backscattering patterns
ranges from two with the 1/8-inch-long cylinder to five with the l-inch-
long cylinder. Note that the curve for the 1/8-inch-long cylinder is

asymmetric for angles close to broadside incidence. The absolute level
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of the return in this latter case is so0 small that it is very sensitive
to any extraneous reflections or electrical noise.

Similar data for five cylinders of i,l-inch diameter are presented
in Figures 5.40 and 5.41. The curves for cylinders orf difrerent lengths
are still the same for angles within about 30° of axial incidence.
Thus, a cylinder endcap that is approximately one wavelength in diameter
is sufficient to dominate the backscattering process near axial
incidence. The relative separations between the curves in Figures 5.40
and 5.41 at broadside (90°) incidence are about the same as those
described in the previous paragraph, but the absolute levels are
somewhat lower because of the smaller diameter of the cylinders. The
number of nulls visible in the curves for both the 1/8- and l-inch-long
cylinders has also changed.

Backscattered-directivity data for various cylinders of 1/4-inch
diameter are presented in Figures 5.42 and 5.43, and similar data for
various 1/8-inch-diameter cylinders are shown in Figures 5.44 and 5.45.
(The results from the 1/8-inch~long cylinders are not presented because
the returned 1levels were too small relative to the background noise.)
In these cases, the endcap returns no longer dominate the scattering
process (relative to the side returns) when the longer cylinders are
exanined, even though the absolute levels of the broadside returns are
less than those seen earlier in this section with cylinders of larger
diameter. Note that, for the 1/8-inch-diameter cylinders, the axia.
return 1s considerably less than the broadside return even @ ¢ -,

1/4~inch-long cylinder.
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To better examine the influence of the cylinders’ lengthks, some of
the previous data have been plotted again in Figures 5.46 and 5.47 with
the length of the cylinders held constant on each plot. The powerful
influence of the change in diameter is clear. Just as the endcap return
dominated the scattering near axial incidence, the side (length-
dependent) return dominates the scattering near broadside incidence for
the l-inch-long cylinders. The side return of the l/4-inch-long
cylinders, however, does not dominate to the same degree. The total
number of nulls present in the latter curves appears to be more strongly
influenced by the length of the cylinder than the diameter.

The Freedman theory cannot be used directly as a theoretical
comparison because it breaks down for cylinders at nonaxial incidence
(see Secrion 2.4.2). However, the closely related physical-optics
approach can provide some interesting informatioun. For example, Figure
5.48 is a plot of the measured data for the 3/4-inch-diameter by l=-inch-
long cylinder along with the corresponding physical-optics computation.
The agreement between theory and experiment is good at both axial and
broadside incidence, but wide discrepancies are noted at some ranges in
between these extremes. Figure 5.49 shows the reason for tl.e
discrepancies. In the figure, the side and end contributions of the
cylinder are plotted separately. At both axial and broadside incidence,
either the side or end component dominates, so that the total result
matches the physical-optics prediction reasonably well. However, at
some angles between the two extreme positions, the two scattering
components become very close in magnitude, and the resulting vector sum

is very sensitive to small errors in either component’s prediction.
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Another comparison between theory and experiment is snown in Figure
5.50 (l/4-inch-diameter by l-inch-long cylinder). In this case, the
length of the cylinder 1is much larger than the diameter, and the
resulting theoretical prediction agrees with the experimental data only
near broadside incidence. Referring to the predictions for the
individual components plotted in Figure 5.51, one can see that the end
contribution is so broad that it generates a very large overlap region
in which the side and end components interact. The resultant
interaction between the backscattefing components for this cylinder is
significant enough to shift the location of the nulls in the total-
backscattering pattern.

Theoretical predictions for two additional examples are given in
Figures 5.52 and 5.53. Again, the predictions are better at axial and
broadside incidence, but there 1is enough variability to limit any
further couaclusions. In general, while the predictions for structures
such as the rectangular strip and the disk (end of cylinder) are
surprisingly accurate on their own, the result of two or more of these
components interacting can be very wrong. The inaccuracies in the
absolute levels of the Freedman predictions noted in Section 5.2 with
the rectangular strip were not present 1in the cylinder examples of this
section. All the theoretical data in this section is plotted exactly as
camputed (i.e., no offset in the absolute level was necessary). Note,
however, that these cylinders probably satisfy the farfield assumptions
of the theoretical method better than any other models used in this

investigation.
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5.4 Scattering from Cones and Modified Cones

The data on scattering from edges discussed in previous sections
has been useful for developing an intuitive wunderstanding of the
physical processes involved. However, there are other types of edges
(i.e., discontinuities in slope or curvature) that are commonly found on
three-dimensional bodies. For that reason, a special model based on a
finite cone 18 inches in length with a 20° half-angle was constructed.
The basic cone shape was chosen because it exhibits both tip and edge
diffraction, and it generates mno specular returns to mask these
components. Removable caps that could substitute for the normal tip of
the cone were also constructed to change the tip into smoothly joined
spherical caps of 1/2~, 1-, and 2-inch radii and 1into a 2-inch
hemisphere. In addition, both a hemisphere and a smoothly joined
spherical termination were fabricated for attachment to the rear of the
cone. The resulting combinations of caps and terminations on the model
exhibit several types of first—- and second-order discontinuities for
investigation. (See Section 3.3 for a more complete description of the
model.)

The design of the cone model also considered a secondary goal: to
evaluate the predictions of the Freedman echo-formation theory. Basic
to this theory’s formulation are the Kirchhoff assumptions, one of which
treats each element of a scatterer’s surface as a small area radiator in
an infinite baffle. This assumption is plausible for specular returns,
but there 1is little reason to believe that it holds at edges. An
experimental investigation 1is the best method for checking the

applicability and validity of this prediction method.
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Because the Freedman method only produces predictions for the cone
at axial incidence (see Section 2.4.5), a detailed investigation of the
frequency response of the cone at axial incidence was included in this
study. The range of frequencies used was 10 - 40 kHz, which corresponds
to a range in kh (h = height of the cone) of 83 - 335. These values are
large enough to meet the conditions for the validity of a short-
wavelength theory. In addition, experimental constraints, involving the
dynamic range in the measurement chamber and the model size, essentially
dictated the chosen frequency range. In addition to the frequency-
response data, directivity data for both scattering and backscattering
were collected at several discrete frequencies within the given range.
Most of the results shown in this section have been normalized to the
field incident at the center line about which the cone model rotated,
but additional adjustments have been made for those curves that are
compared with Freedman predictions in an attempt to better approximate
farfield conditions.

Great care was expended 1in supporting and aligning the models
because of difficulties experienced 1in the early cone experiments of
this study. The attachment points of the supporting wires were
countersunk totally into the model’s surface, and the mounting holes
were filled with clay after hanging the model. The smallest diameter
wire that could support the weight of the models was used to suspend
them. The data proved to be very sensitive to the model’s alignment,
especially at axial incidence. Thus, a telescope and level were used
for a basic aligmment, followed by peaking the actual acoustic return

from the rear edge of the cone at axial incidence. A pulse length of
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.28 milliseconds (slightly shorter in a few cases) was used so that most
of the individual returns could be separated. Note that the cone
rotated only about its center of mass because of the method of
suspension. The location of this center point could not be controlled,
but its approximate position was noted during each experiment. The
separation distances between the models and the source/receiver were set
at the maximum practical values, although these values were much too

small to guarantee farfield conditions.

5.4.1 General Discussion of Experimental Concerns

Before looking at the final results of the cone study, it 1is
interesting to examine some of the experimental difficulties and
observations. Figure 5.54 1is a plot of the frequency response of all
the backscattered returns that were observed in a time window
encompassing the cone-model responses. The strongest return in all
cases, except those in which the model had either the hemispherical or
spherical terminations (not shown in this figure), came from the rear
edge of the cone. The weakest return came from the tip region. In
fact, no identifiable echo was observed from the tip above the gzeneral
noise level. The data for the tip in Figure 5.54 were obtained by
setting the receiver gacte’s window at the predicted time of the tip
return and plotting the background level there. In addition to the
rear-edge and tip-region returns, one or two echoes were generally
observed in the region between the physical joint at which the model’s
removable caps were attached and the rear edge. The cone had no

features in this region that might generate these additional scattered
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returns. The origin of these echoes was never positively identified,
but extensive experimentation led to the conclusion that they were
either secondary returns (for example, cone to speaker to microphone) or
were coming from the support wires at a distance somewhat above the
cone’s surface. Finally, a return was observed from the joint between
the removable caps and the basic model. Both the joint return and the
middle~region returns were considered extraneous to the iaformation
desired, and any effect of these components on the final results was
carefully eliminated by time gating.

Although extraneous from the point of view of the planned
experiments, the backscattered return from the cap attachment (joint)
line provided useful intuitive information about the scattering process.
The model and its various caps were all constructed with relatively high
precision for a wooden structure. The error in the matching of the cap
and cone-body cross sections aloug the joint circle was never more than
1/32 inch (usually wmuch less), which is less than .1\ at the highest
frequency used. Furthermore, the matching error was always such that
the cap portion was larger in diameter, which resulted in a small shadow
at the joint rather than a small specular area. From a visual
perspective, the error in cross sectional matching appeared to be
miniscule compared to the size of the model. However, it did represent
a zeroth-order discontinuity in the surface, which is the most prominent
edge~type scattering source. Based on this reasoning, the joint region
of the cone model was carefully filled with modeling clay to form a
smooth transition between the edge of the cap and the surface of the

cone body. The results are shown in Figure 5.55. The return from the
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cap joint has not been eliminated, but it has been reduced by almost 15
dB over the entire frequency range. A view of the directivity of the
joint component at 20 kHz, both before and after smoothing the mismatch
at the joint, is presented in Figure 5.56. The original joint acts much
like the rear edge of the cone, while the directivity of the smoothed
joint exhibits both a reduced amplitude and a change in form. This
smoothing procedure was used with all the various caps and terminations
of the model. The resulting cap-joint returns were thus reduced to the
approximate level of the one just shown (see Figure 5.57). In fact, the
agreement between the returns from the joint region among all the
various caps is remarkable when one considers that each corresponding
joint mismatch 1is different. These results point to an extreme
sensitivity of the backscattering to small changes in the surface and
surface curvature that makes experimental studies very difficult and
that reduces the practical value of detailed considerations of the

various types of edges.

5.4.2 Backscattering at Axial Incidence

The frequency response of the cone model at axial incidence with
each of the five caps and with the combination of the normal tip and the
two terminations was examined. Theoretical predictions wusing the
Freedman equations derived in Sections 2.4.5 and 2.4.6 were also
computed and plotted. Because the measurements had to be made with the
transducers relatively close to the scatterer, each Dbackscattered
component was individually normalized to the field incident at the point

of its origin on the cone model. This eliminated any differences among
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the component returns that could be attributed to propagation losses
over different path lengths. In the theoretical calculations, the rf
occurring in the denominator of all the terms was treated as the product
of the distances from the source and receiver to the actual scattering
feature on the model.

Figure 5.58 presents the results for backscattering obtained from
the normal cone configuration. The agreement between experimental and
theoretical data for the tip region is remarkable. Recall, however,
that no distinct echo was observed experimentally at :the tip. Thus,
this agreement could be purely coincidental. The Freedman prediction
for the rear edge, while in the general ballpark of the experimental
results, has a distinctly different frequency dependence. In fact, the
prediction has essentially reached its high-frequency limit. Based on
the trend observed in Figure 5.58, the agreement between theory and
experiment for the rear-edge return can be expected to get worse in
frequency ranges both above and below that used for these experiments.

Changes observed in the cone model’s backscattering when spherical
caps with radii of 1/2, 1, and 2 inches are smoothly joined :o the end
of the cone are plotted in Figures 5.59 - 5.61. The rear-edge returns
are essentially the same as those from the normal cone discussed in the
previous paragraph, because this part of the model has not changed.
However, the tip return has been replaced by a specular return from the
spherical cap; and a new return from the second-derivative
discontinuity, at which the spherical cap meets the cone outline, is
predicted. The agreement between theory and experiment for the specular

components from the cap is generally good, although the 1/2- and 2-inch
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caps appear to be too small relative to the wavelength to generate the
full amplitude of the predicted return. The slightly different trend
observed with the 1l-inch cap is more than 1likely caused by an
imperfection in the cap itself. (This cap appears to be more blunt than
it should be.) Any experimental return from the second-derivative joiat
is too close to the specular cap return to be observed separately, but
it 1is apparently small enough to prevent noticeable interference
oscillations in the frequency response of the cap return. This result
is consistent with the prediction but not sufficient to judge the
agreement with experiment.

Figure 5.62 shows the results obtained when the hemispherical cap
of 2-inch radius is used with the basic cone. The specular return from
the cap agrees well with the predicted value, possibly because of the
much larger spherical area compared to that of the 2-inch smoothly
joined cap. Good agreement is also noted between the experimental and
predicted returns from the joint line between the hemisphere and the
cone outline, which exhibits discontinuities in both slope and
curvature. Note that, in this case, the surface discontinuity at the
cap joint corresponds to the physical joint between the basic cone model
and the removable cap. The physical match between this particular cap
and the basic cone was probably the best of any of the removable caps.
However, given the sensitivity of the data to small imperfections in the
model at this joint (noted in Section 5.4.l1), the agreement between
theory and experiment for the joint component is remarkable.

Returning to the model with a normal tip, Figure 5.63 shows what

happens when a hemisphere 1is attached to the rear of the cone. Since
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the only change in the model (compared to a normal cone) occurs in the
geometrical shadow, the Freedman prediction is the same as that for the
unterminated cone. However, the experimental data for the rear-edge
component have changed considerably, and the agreement between theory
and experiment {s even poorer than noted previously with the normal
cone. The tip of this model configuration is the same as that for the
normal cone, but the experimental values associated with the tip region
are now larger that the predicted values. It is difficult to draw any
conclusions about this last fact, however, because there was still no
distinct echo observed from the tip.

Figure 5.64 1is a plot of the results that were obtained with a
smooth spherical termination. The rear edge of the cone now exhibits
only a second-order discontinuity. The experimental results from this
edge are lower than those for the hemispherical termination, but not
nearly as low as the predicted values. For comparison, the rear-edge
returns from the unterminated, hemispherically terminated, and
spherically terminated cone are plotted in Figure 5.65. The greatest
change occurs between the unterminated and hemispherically terminated
cones--the very cases that are indistinguishable to the Freedman theory.
With the spherical termination, a return from the shadow boundary is
also predicted, but no such component was observed. (This fact has been
noted by other researchers as a fault of physical-optics approaches.)
A&n additional return, however, was observed at some frequencies,
apparently originating at the antipole,in the shadow of the spherically
terminated cone. This barely perceptible component may have been caused
by the suspension-point anchor countersunk into the model in that

vicinity.
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5.4.3 Scattering by a Normal Cone

Although the Freedman theory cannot provide predictions for the
backscattering from a cone at other than axial incidence, this intuitive
investigation has moved on to examine both backscattering and scattering
from a cone at other incidence angles. For example, directivities of
the backscatter from the 18-inch-long, 20°-half-angle cone at
frequencies of 10, 20, 30, and 40 kHz are shown in Figures 5.66 - 5.69,
respectively. Observations made during these experiments showed that,
in the angular range of about 0° - 40°, the data are dominated by the
return from the rear edge. The characteristic peak at axial incidence,
at which the edge 1is parallel with the incident wavefront, is seen at
all frequencies. A lobe structure similar to that associated with
extended radiating sources is also observed in the curves. As the
frequency increases, the lobes 1in this rear-edge pattern get closer
together, the edge contribution decreases in importance, and the overall
dynamic range increases as all reflections become more directional.
Note that the rear-edge return 1is really only prominent near axial
incidence. However, it stil]l dominates over a fairly wide angular range
because there are no other contributing sources of any significance.
For angles off axial incidence, the rear-edge return appears as a
distinct echo originating at the nearest point on the illuminated
portion of the edge. In the vicinity of 70°, a strong specular return
from the side of the cone dominates all others.

Some data of backscattering from the base of the cone were also
collected, and this information is summarized in Figures 5.70 - 5.73,

The model 1in this orientation was expected to act essentially like a
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disk or the end of a cylinder. However, unlike the cylinder data
presented in Section 5.3, the echoes from the individual edges of the
disk were resolved in time. At axial incidence (on the rear of the
cone), a stroug specular return was observed. As the model was then
rotated, this single return split into components from the points aloag
the edge that were nearest and furthest from the microphone. This
verified that a disk does produce two distinct echoes, just as predicted
by the Freedman formulation. Additional returns between these two
echoes were observed at some incidence angles, but these were probably
caused by the mounting plate for the model’s rear terminations that is
countersunk into the base of the cone model. It is interesting to note
the relative insensitivity of the backscattering data from the disk to a
change in frequency--not only the specular level, but also the width of
the axial peak and the level at angles other than axial incidence.

As an adjunct to the data already discussed, the bistatic
scattering of the 18~inch cone model was measured at frequencies of 10,
20, 30, and 40 kHz. These data are presented'in Figures 5.74 - 5.77.
The prominent lobe structure near axial incidence, as well as the
remainder of the data plotted, can all be attributed to the rear edge.
The axial lobes are similar to those observed with the backscattered
data discussed in the previous paragraph. However, the widths of the
lobes are approximately doubled because, 1in this case, the paths
followed by the two edge returns (whose interference generates the
oscillations) are different only on the return path. It is interesting
to note that the basic shape of the bistatic curves at different
frequencies remains the same, even though the absolute levels do

decrease with increasing frequency.

*
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The bistatic scattering from the model at 2U° incidence is
presented in Figures 5.78 and 5.79 for frequencies of 20 and 40 kiHz,
respectively. At all angles plotted to the right of =309, the returns
orizinate at the rear edge. Note that, in the 20-kHz plot (Figure
5.78), a peak in the scattered return is visible at twice tne angle of
incidence. This angle 1is at a point that corresponds to a direct
reflection from the cone’s tip. A similar peak is not observed at 4y
kHz. The large peak at the left side of the figures is a specular
return reflected from the side of the cone at the normal reflection
angle. Figures 5.80 and 5.81 show what happens to the bistatic
scattering at the same two frequencies for 45° incidence. These results
are similar to the previous results taken at 20° incidence. It is now
possible, however, to see that the specular return from the side of the
cone extends over a fairly broad angular area. Looking at the data for
both 20° and 45° incidence, very little difference with respect to
frequency 1is noted in the scattering, except for a slightly lower
amplitude in the regions dominated by rear-edge components at the higher

frequency.

5.4.4 Scattering by Cones with Spherical and Hemispherical Caps

One method for comparing the relative influence of specular and
edge-generated scattering components 1is to modify the tip of a cone so
that it becomes a spherical surface. By choosing how this spherical
surface is joined to the cone outline, an additional first- or second~
order edge can alsoc be created. It has already been mentioned (see the

beginning of Section 5.4) that four such tip mnmodifications were
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constructed and used in this investigation: three smoothly joined
spherical tips of 1/2-, 1-, and 2-inch radii and a hemisphere of l-inch
radius. Except for the hemisphere, the edges created at the

discontinuity between the spherical <cap and the cone did not scatter
enough to be visible over the nearby specular return. However, sonme
interesting comparisons of specular and rear-edge returns were possible.

Figures 5.82 - 5.84 are directivity plots of the backscattering
from the cone with the three different spherical caps at 10 kHz. The
data for the 1/2-inch-capped model are essentially the same as those for
a normal cone because the rear-edge contribution dominates at all angles
except the angle of the specular region near 70°, The spherical
surfaces of the other two caps, however, generate echoes that are strong
enough to dominate the shape of the curves over all the central angular
range (about :ﬁo°) except right at 0°. Any comparison between the cap
and rear-edge components must take into account the fact that the rear-
edge component suffers a propagation loss of about 8 dB gzreater than
that of the cap. (Recall that the frequency-response data for axial
incidence presented in Section 5.4.2 were compensated for the different
propagation paths, while the present data have not been compensated.)
However, it 1is clear that the amplitude of the edge component falls
somewhere between the amplitude of the specular components from the
1/2=inch cap (kR = 2.3) and the l-inch cap (kR = 4.6). Note also that,
as the radius of the cap gets larger, its directivity begins to look
more and more like the uniform pattern associated with a sphere (see

Figure 5.84).
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Figure 5.85 is a plot of the backscattered directivities at 20 kHz
from the cone models with all three spherical caps, and Figures 5.86 and
5.87 present similar data at 30 and 40 kHz. At these frequencies, the
specular return from the 1/2-inch cap is strong enough to dominate the
total backscattering except for the peak at axial incidence from the
rear edge. A comparison of the absolute levels between these cases and
the 10-kHz case discussed in the previous paragraph shows that this
specular domination 1is caused more by the decline with increasing
frequency of the rear-edge component than any increase in the tip’s
specular component. The levels of the specular returns, in fact, remain
fairly constant with frequency. The shape of the curves near axial
incidence, however, does become more uniform at higher frequencies,
probably because the smaller effective (specular) scattering area
remains on the spherical cap over a larger range of incidence angles.
Results for bistatic scattering from the three spherically capped
models at 10 kHz are presented in Figure 5.88. Just as for
backscattering, the rear-edge component dominates the curve for the
1/2-inch-capped model, but it affects the curves for the other two
models only near axial 1incidence. The scattered returns that are
determined by specular effects are considerably different in form from
those attributable to edge effects. The specular returns approximate
the uniform result of a sphere to a degree that is dependent on the size
of the cap’s radius. As an additional comparison, a plot of the
bistatic scattering from only the cap of the 1/2-inch-capped model is
shown in Figure 5.89. This curve has roughly the same form as the

specular curves for the caps of larger diameter, but it occurs at a
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level that is too low to noticeably influence the total scattering
curve. Note that the extra activity evident in all the bistatic plots
at about 28° was caused by an extraneous return.

Similar bistatic scattering data for the three models at 20, 30,
and 40 kHz are presented in Figures 5.90 - 5.92,., The trends noted at 10
kHz are also evident in this data. In addition, just as was found with
the backscattering data, the specular return from the l/2-inch cap now
has a greater influence on the total scattering results than it hkad at
10 kHz ©because of the decreased amplitude of the rear-edge component.
In a slight departure from the backscattering results, however, the
shape of the bistatic curves does not seem to change (i.e., become more
uniform) with increasing frequency. This 1last result is not
unreasonable since the incident field remains fixed along the cone axis.

Although similar at axial incidence to the 2-inch spherically
capped model, the 2-inch hemispherically capped model exhibits
noticeable differences in its directivities for both scattering and
backscattering. Figures 5.93 and 5.94 show the results of the
backscattered directivities at the four usual frequencies. The levels
near axial incidence are larger than those for the equivalent
spherically capped model primarily because of the distinct bulge in the
middle of the curves. A slight oscillatory pattern, possibly caused by
interferences of some kind, is also evident. (The cap-joint return is
not interfering because it has been effectively removed by time gating.)
Note that the bulge in the curve that was just mentioned gets noticeably
narrower as the frequency increases. This result is unusual because the

hemispherical cap 1is a much better model of a sphere than any of the
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spherical caps, although it does join to the cone outline in a more
abrupt manner. The bistatic scattering results at all four frequencies
for the hemispherically capped model are plotted in Figure 5.95. Again,
the levels are somewhat larger than those for the corresponding
spherically capped model, and the bistatic curves exhibit a noticeable
bulge in the center. The bulges in this case, however, appear to be

about twice as wide as those in the backscattering case.

5.4.5 Scattering by Cones with Terminations

Because the scattering by a cone is so heavily dominated by returns
from the rear edge, an examination of various modifications to this edge
is perhaps the most interesting aspect of these cone studies. The
addition of a hemispherical termination with the same radius as the base
of the cone reduces the severity of the edge considerably. It does not
affect the illuminated portion of the cone model, however, for a
reasonably large range of incidence angles near the axial direction.
Alternately, a section of a sphere that joins the rear of the cone in a
manner that preserves the slope there can be added to form a cone-
sphere. This will add considerably to the size of the model, including
an additional extension in the illuminated region. It will also move
the shadow boundary away from the location of the former rear edge and
leave a smooth surface instead of an edge at the new shadow boundary.
Both types of terminations were investigated 1in this study. It should
be noted, however, that the data in these cases were much more difficult
to take than any of the previously discussed cone data. The scattering

from the modified rear edges was reduced to an amplitude that was well
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below the scattered amplitude from some of the extraneous features
mentioned at the beginning of this section (such as the physical cap
joinct); thus, a careful procedure of gating various returns and aatching
similar plots was required to arrive at the final results. Although
data were recorded at 10, 20, 30, and 40 kHz, the data at 30 kidz were
never successfully isolated from the extraneous returns. Note that most
of the curves presented in this section are plotted separately because
they overlap in a manner that is too complicated to permit viewing on a
single plot. However, the data from the two different terminations
should be compared among themselves and with cthe normal coae results
shown in Section 5.4.3.

Figures 5.96 = 5.98 present the directivities of the backscatter
from the hemispherically terminated come at frequencies of 10, 20, and
40 kHz. Comparing these results with the equivalent normal-cone data in
Figures 5.66 - 5.69, one notes that the specula: returns from the side
of the cone at angles near 70° are about the same. However, the region
near 0°, at which the rear-edge return dominates the backscattering, is
much lower (about 10 dB) in amplitude. The total dynamic range is thus
larger, approaching 60 dB in the 40-kHz case. Note also that the lobe
structure near axial incidence is different. The peak-to-sidelobe level
for the terminated cone is less than that for the normal cone, and the
widths of the maxima appear to be somewhat different. This change in
the form of the edge-backscattering plots is similar to that observed
when the surface discontinuity at the physical joint of the cone model’s

caps was smoothed with modeling clay (see Section 5.4.1).
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The same conclusions are applicable 1in a slightly exaggerated form
when the spherical termination (as opposed to the hemispnerical
termination) is applied to the cone model. This can be seen in Figures
5.99 - 5.101. Again, the side returns for both the normal and
terminated cones are very similar except for a broadening in width, this
time near 90°. At other angles, these curves are very similar to those
for the hemispherically capped cone except at axial incidence.
Especially at 10 kHz, the edge return for the cone-sphere at axial
incidence seems to be lower than that for the hemispherically terminated
cone because of a reduction in the central peak relative to the side
lobes. Assuming that these results are not invalidated by slight
discrepancies in the models, it appears that going from a slight
discontinuity in the first derivative (i.e., hemispherically terminated
cone) to one in the second derivative (i.e., cone-sphere) at the edge
reduces the backscattered return only at axial incidence. This is
contrary to Freedman’s general formulation, in which reduction by an
additional factor of k is predicted when the order of the discontinuity
is increased.

The bistatic scattering results at 10, 20, and 40 kHz for both the
hemispherically and spherically terminated cones are shown 1in Figures
5.102 and 5.103, respectively. In the case of the hemispherical
termination, the curves are reduced in amplitude but changed very little
in shape from those for the normal cone in Figures 5.74 - 5.77. The
data obtained with the spherical termination are similar to those from
the hemispherical termination except at axial incidence, at which the

central peak is compressed at least at the lower frequencies. In
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Figure 5.101 Directivity of the backscatter at 40 kHz from the cone
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general, the same conclusions given in the previous paragrapn with
regard to backscattering apply here. Because of variabilities in the
data, however, it is difficult to draw any conclusions about changes in

the lobe structure of the curves.

-
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CHAPTER 6

HOLOGRAPHIC IMAGING TECHNIQUES

The primary goal of this investigation is to examine the scattering
of sound by three-dimensional bodies into the farfield. However, an
adequate understanding of this physical process may require knowledge of
the acoustic field near the scattering body. For example, the
backscattering from a small cylindrical obstruction on the surface of a
spheroid is modified by the local field near the spheroid (see Section
4.4), Unfortunately, this local field 1is very difficult to measure
because it is distributed in a complex manner and because it is easily
distorted by any measurement sensor.

During the course of this investigation, the author was introduced
to a relatively new measurement technique called long-wavelength
acoustic imaging or holography. This procedure uses data collected in
the farfield to determine the nonevanescent components of the local
field near a radiator or scatterer. In short, by determining both the
amplitude and phase of the harmonic field scattered by an object into
the farfield, the propagating portion of the acoustic pressure (or
velocity) can be determined at the object by back propagating the field
to that location. As might be expected, there are limitations to the
procedure, as well as a considerable number of unresolved questions in
the associated theory. The method, however, has demonstrated a
remarkable ability to produce useful results despite poor experimental
conditions and violations of the theoretical assumptions. For that

reason, the author decided to experimentally investigate the usefulness
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of this imaging technique for diffraction studies as a part of this

thesis efforrt.

The following sections briefly review the efforts that were carried

out within the scope of this scattering investigation i~ the area of
wavefront imaging. The topics include a description of the complex
equipment developed for the study, as well as a presentation of the
results obtained to date. There is also a brief overview of the

theoretical foundations of the procedure; this overview is intended to
provide assistance in applying physical interpretations to the results.
Note that these efforts have been performed in conjunction with Cohen
(197¢) and K. E. Eschenberg, and they represent an extension of earlier

work by Graham (1969) and Watson (1971).

6.1 Theoretical Basics

The technique of wavefront reconstruction or holography is based on
well-known concepts in scalar wave theory. However, both the procedures
used in processing the measured data and the interpretation of the
results are wunusual enough to cause many misunderstandings. The
following discussion provides a general theoretical explanation of the
technique using the interpretations provided by pioneers in the field of
optical hol&gtaphy (for example, Lalor, 1968; Wolf & Shewell, 1967).
Because this author has been concerned primarily with the experimental
aspects of the measurement procedure, many important (and largely
unresolved) considerations such as finite aperture size, resolution,
multiple scatterers, etc. have been omitted from the discussion. The

reader is referred to papers by Cohen (1979) and Van Roy (1971), as well
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as the book by Goodman (1968), for a more complete treatment of
wavefront-reconstruction theory.

For purposes of this study, a hologram 1is a recording of the
amplitude and phase of a pressure wavefront at a large number of points
within a designated plane. The task of reconstruction is to compute the
form of that same wavefront at some other plane, in particular, the
plane that contained the original source (object plane). This
reconstruction procedure is derived by first compuﬁing the recorded
wavefront in terms of the source distribution (forward propagation), and
then inverting the equation to effectively backward propagate the wave
to its source.

The forward-propagation solution is determined from the Helmholtz-
Huyzhens radiation integral (Skudrzyk, 1971, p. 492; also see Appendix

A):

V(R

V(R = ” (G(|Ry - Ro|)[ = ) - v(RO)( ™ } 1ds
s

(6.1)

This expression relates the velocity potential V at any field point RH

to both the velocity potential and its normal derivative at points RO on
a surface S. The surface S must be a closed boundary surrounding a
sourceless region containing the field point. The function G is the

Green’s function of the form

G(r) = (XREARD 46 () (6.2)
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where r is measured from an origin inside the surface § and where Go(r)
is any function analytic within S. Both derivatives are taken with
respect to the outward normal of the surface S. The orientation of the
source point, field point, and integration surface to be considered is
shown in Figure 6.1. Note that the source point (RS) and the field
point (RH, or hologram point) are separated by the planar surface of
integration S0 (object plane). This surface is closed around the field
point by a hemisphere whose radius tends to infinity.

Equation 6.1 can be simplified in two ways. First, the integral
over the infinite hemisphere contributes nothing to the solution because
both the pressure field and the Green’s function tend to zero at
infinity. Thus, this portion of the integral can be ignored. Second,
the analytic part of the Green’s function [Go(r)] can be chogsen 1in a
manner that makes the total Green’s function zero at all points on the

boundary SO. The function becomes

G(r) = (exp(-ikr)) - [exp(-ikr'))

41y 4rr' ' (6.3)

where r’ = |Rﬁ - Rol and Ré is a point located symmetrically across the
plane S0 from RH at an equal distance from the plane (see Figure 6.1).

Note that it 1is not necessary for this Green's function to have a
physical meaning as long as the function satisfies the mathematical
requirements that have been stated. However, if a physical
interpretation is desired, the reader should consider the equivalent
reciprocal case, which has a field point at RO and two source points at
RH and Ré. 1f the Green’s function chosen in Equation 6.3 is used in

Equation 6.1, the first term under the integral sign 1is eliminated,
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o 3G(IRy = Ryi) !
V(Ry) = JJ V(RO)(——-—ga-—————st . (6.%)
S
0

This equation can be expressed in terms of the physical quantity of

pressure by use of the relation
3V .
P 00(529 iwegVv (6.5)

where pO is the density of the medium and w is the angular frequency.

The result is

3G(|R; = R,[)
p(RH)-—” P(Ry) ( &gn 0 Jdsy . (6.6)

%o

The choice of how to solve Equation 6.6 normally depends on the

form of p(RO). However, because S0 is a rectangular area, a more

general solution is possible. Letting Gn(r) represent the normal
derivative of the Green’s function, D= zO - zH, and expressing all
coordinates in a cartesian system, Equation 6.6 becomes

p(xoayO’zo) = -J[ p(xo»yOsz)Gn(xH - xo,yH - yo,D)dedyO
5o

(6.7)

This integral is in the form of a two-dimensional convolution in xo and
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y., which in shorthand notation can be written as

0

PR = 2(Ry) * G () . (6.3)

Using the properties of Fourier transforms and the convolution theorenm
(see, for example, Skudrzyk, 1971, pp. 99-100), Equation 6.3 can be
written in frequency space as

p(kx’ky’z}!) = p(kx’ky’zo) ¢ Gn(kx:ky,D) . (6.9)

The symbol """ denotes the two-dimensional spatial Fourier transform

defined by the equations

o«

5(kx,ky) = ” a(x,y)e

i(kxx+kyY)dxdy (6.10)

and
-]

atxy) = G)° ” iRk e

-0

-i(kxx+kyy)dkxdky . (6.11)

The frequency-space parameters kx and ky (sometimes called spatial
frequencies) are spatial wave numbers (with units of 1/length) defined
by the Fourier transform. They can be related to an effective wave

number K in the plane by

2,1/2

) (6.12)

K= (k2 +k
X y

Note that K is essentially a parameter of the Fourier transform that can
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assume any required value. When propagation »>f this planar two-
dimensional field is considered, a new wave number kz is also needed.
However, the wave numbers 1in the plane are now related to the wave

number k in the acoustic medium by

2,1/2 (kxz sk 24 HL

y 2 (6.13)

k=(K2+k
rA

As is shown later, this last relationship is of profound significance to
the reconstruction process.

Equation 6.9 is a purely algebraic expression. Thus, it can easily
be inverted to show that

p(k_,k_,z,)
2g) = ——x y' H (6.14)

ﬁ(kx,k -
G (k_,k_,D)
n x>y

y

This equation (or its inverse two-dimensional transform) 1is the
fundamental relation on which wavefront reconstruction is based. Notice
that it gives the pressure field at an  assumed planar source
distribution (object plane) as a function of the pressure measured on a
field plane (hologram plane). The function l/@n(kx,ky,D) can be
identified as the frequency-domain backward-propagation function.

In order to study the characteristics of the process of wavefront
reconstruction, it 1is necessary to find the functional form of the
backward propagator (i.e., an). Refer again to Figure 6.l. For source
points RS on the surface S0 (as assumed in the reconstruction process),

the magnitudes of r and r’ in the Green’s function (Equation 6.3) are

equal, and the normal derivatives of the two terms in the Green’'s
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function differ only in sign. Thus,

. ., —ikr,,
oy = B EEE L

n 3 - 5n

Noting that the surface normal is in the direction of the z coordinate,

the transform of the Green’s function becomes

® .
-ikr

PPN d(e Jamr)y i(k_x.+k
Gn(r) = JJ ZC—S——EE—————l)e ( x"0 yyO)dxody0 , (6.16)
where £ = (kx,ky,z). To simplify this discussion, assume that the
origin of the coordinates is at the field point (RH = 0) so that
. 2 2 2,1/2
r = |&H - Rol (xy" + vy +257) (6.17)

It is now convenient to transform both the space and frequency

coordinates from a rectangular to a polar coordinate system using

2 2,1/2 - - ,
K= (kx + ky ) , kx K cos ¢ . ky K sin ¢ (6.18)

R = (x2 + y2)1/2 , X = R cos 9 . y = R sin 9

(6.19)

Substituting these relations into the integral expression for the

frequency~domain Green’s function (Equation 6.16) and exchanging the
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order of differentiation and integration, one obtains

«
—~
la]
[
~r
!}
o

. e-iKR(cos ¢ cos B+sin ¢ sin 3)

- RdedR . (6.20)
Next, a simple trigometric identity simplifies the relation to

o« 2
L 21 -ik(R2+zO )1/2
J J e Rd64R

A -iKR cos(8-¢)
6y (Te) = 37 4z 2 42 5172 Je
00 0

(6.21)

The integral over & represents a Bessel function of order zero

(Skudrzyk, 1971, p. 697). Thus, Equation 6.21 can be written as

2,1/2
0
2,1/2
0

—ik(R2+z
e

A n - \ 2
Gn(rO) }JO(KR)RdR . (6.22)

dz }o (RZ +z

This integral is in the form of a Hankel transform, and the result is

given by Erdelyi (1954, p. 9) as

2 2.1/2
-1 ]e—izo(k -K™)

. b (6.23)
ENYE

G (ry) = - = {(
n 0 dz (kZ

Finally, the derivative with respect to the z coordinate can be applied




to yield

. 202172
ot ~ = - -lZO(R -K )
Gn(ro) e

The function of interest here, the backward propagator, is thus given by

2 21/2
1L izg(kT-KT) (6.25)

The backward-propagation function given by Equation 6.25 takes the
form of the phase delay of a plane wave traveling in the z direction, as
can be seen by using the relationship between k and K (Equation 6.13) to

show that

1 . _clzokz (6.26)

This last fact explains why the function 1is called a propagation
function, and it leads to an interesting physical interpretation. The
wavefront-reconstruction process generates an inverse—-propagation
solution expressed by Equation 6,14 and Figure 6.1. The pressure field
measured at the hologram plane is wused to constru.c aa equivalent
distribution of (monopole) sources in the object plane that will produce
the measured field. Furthermore, the constructed source distribution is
always equivalent to the field at the hologram plane after propagation
back to the object plane. Note that the geometrical relationship
between the hologram plane and the object plane is not fixed. Once the

field is known in the hologram plane, it can be backward propagated to
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any other object plane. The information provided bv wavefront
reconstruction is particularly useful when the object plane is
coincident with (or an infinitesimal distance in front of) the radiating
and/or diffracting surface that generated the measured field. However,
the result is mathematically valid for an object plane anywhere between
the hologram plane and the closest source, with the only requirement
being that the region inside the entire <closed surface § (refer to
Figure 6.1) contain no sources. Thus, by measuring both the amplitude
and phase of a harmonic field (or the harmonic components of any field)
at the hologram plane, the complete three-dimensional structure of this
field (reconstructed one plane at a time) has been determined.

The actual propagation process involved with wavefront
reconstruction requires more explanation. The pressure-field
representation in the basic reconstruction equation (Equation 6.14) is a
two-dimensional spatial transform of the pressure in the hologram.
Thus, the distribution of the field 1in this plane is described
mathematically as a continuous sum of two-dimensional plane waves of
various amplitudes and frequencies. In a manner analogous to the
description of a time waveform by a frequency spectrum, Fourier-
transform theory shows that any functional distribution that is well-
behaved at infinity can be represented by an equivalent frequency-domain
spectrum of adequate bandwidth. Thus, a spectrum of three-dimensional
plane waves whose traces on both the hologram and object planes sum to
produce the respective field distributions can be used to represent the
backward propagation. In addition, the individual spectral waves must

physically propagate in the medium between the hologram and object
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planes at a characteristic sound speed. The resulting bandwidth
limitation on the backward-propagated field is evident in the two forms

of the backward propagator (Equation 6.25):

-e_lzokz for K < k

Calfg)  |-eZ0kz for K>k (6.27)

In this relation, kz = (k2 - KZ)I/Z. When the effective wave number in
the hologram plane (K) is less than that in the medium (k), the spectral
waves whose traces match the corresponding components in the hologram
are backward propagated by inverting their phase. However, in the
opposite case (K > k), the gspectral waves must be exponentially
amplified to account for the rapid exponential decrease that occurs when
high-spatial-frequency components near the object attempt to radiate
into the surrounding medium. In a real experiment, any exponentially
attenuated components will rapidly drop below the background noise
level, making it impractical to boost them by the required amount.
Consequently, a modified backward propagator that substitutes an
exponential attenuation for K > k is normally wused. In this way, the
field 1s reconstructed as if the higher-spatial-frequency components
never existed, and a resolution limitation close to the wavelength in
the acoustic medium is introduced. This field resulting from the latter
reconstruction procedure is very useful, however, for many types of
studies because only the components that radiate into the farfield are
imaged.

The resolution 1limitation (or advantage) of wavefront

reconstruction 1s an inherent part of the physical process of wave
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propagation, and it makes the interpretation of holographic results
difficult. In addition, there are variations from the ideal situation
presented in the previous discussion that result from practical
considerations. For example, a real hologram plane 1is finite in
dimension. This 1limitation degrades the image somewhat due to
diffraction effects at the edges of the hologram, and it results in the
hologram intercepting only a portion of the sound radiated or scattered
by the structure under investigation. However, the reconstruction
process proceeds blindly according to the simple conditions assumed
during the derivation. Thus, the process predicts a directed source
distribution, i.e., a distribution of sources that correctly reproduces
the field originally measured at the hologram but may generate a
different field at points outside the hologram. The same type of result
occurs when examining either multiple objects at different z distances
or an extended, three-dimensional object. The reconstruction is
technically invalid for all but the nearest object because additional
sources appear inside the surface of integration (recall the surface S
in Figure 6.1) in the other cases. The result observed, however, can be
described as showing the sources in the current reconstruction plane "in
focus" and the others as "out-of-focus" noise terms.

Detailed treatment of these theoretical questions, as well as
others relating to the process of wavefront reconstruction, is beyond
the scope of this study. The technique is interesting, however, because
previous investigators have shown that it produces very useful results,
even under less than ideal experimental conditions that violate some of

the underlying assumptions (Graham, 1969; Watson, 1971). The wavefront-
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reconstruction process has been used in this investigation for two
reasons. First, it was desired to experimentally evaluate the
applicability and usefulness of this imaging technique in studies of
scattering. Second, an effort was made to use this technique to provide
additional clues about the physical diffraction mechanisms associated

with the nearfield of a scatterer.

6.2 Experimental Apparatus

The studies of wavefront~reconstruction techniques performed in
this investigation are an extension of work done by Graham (1969) and
Watson (1972) at this laboratory. These and other researchers
demonstrated the fundamental utility of the procedures for highlighting
primary sources of farfield sound on radiating and scattering bodies.
However, their results indicated that more accurate techniques (where
the "more" was undefined) would be required to obtain reliable
quantitative information and to relate the data directly to physical
parameters. Consequently, early in the planning stages of this study,
it was decided to devise a measurement capability with sufficient
versatility to implement suggested experimental improvements and to
adapt to new changes in technique that might be required. As a result
of this decision, a considerable amount of effort was devoted to
development of the required apparatus and processing techniques over a
span of several years. However, the effort has been justified as the
completed system has easily adapted to required methodology changes that

were not even considered at the beginniﬁg.
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The experimental requirements can be divided into three broad
steps: (1) measurement of the field scattered or radiated by an object
over an entire rectangular plane, (2) reconstruction of the field at the
object by backward propagation, and (3) examination and analysis of the
results. The most important component of the field to be measured is,
unfortunately, the most difficult to measure: the phase. The importance
of the phase information is dramatically illustrated by Watson’s (1971)
excellent results, which were derived solely from measurements of the
phase expressed with a binary resolution (i.e., in phase or out of
phase). Traditional holographic methods wused the interference between
the field of the scattering object and a reference field to indicate the
phase; then, they tapped the Fourier-transform abilities of lenses to
reconstruct the image. For this study, however, the amplitude and phase
were measured directly. This measurement is feasible at the 1long
wavelengths used, an; it allows the elimination of several spurious
interference terms that would otherwise be present in the
recongtruction. In order to study scattering effects, the equipment was
designed to operate with sine-wave pulses of short duration. The
microphone scanning system was required to accurately and repeatably
position sensors at up to 256 sampling positions along both vertical and
horizontal axes (the finest sampling wused by Watson in  his
investigations). Finally, both the reconstruction process and the
interpretation of the results were performed on a digital computer.
This allowed the emulation and study of any real or imagined (wi:thin

practical limits) propagation process, as well as the utilization of

available digital processing techniques.
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A block diagram of the data-acquisition and control system that was
developed to meet the specified requirements is shown in Figure 6.2. In
order to implement the required versatility of the system, most of the
component devices are operated under the control of a programmable
microprocessor. Budget limitations ruled out the acquisition of a
complete minicomputer. Thus, a basic microprocessor board (Texas
Instruments TM990/100M) was purchased, and the resident monitor program
that came with this board was modified to permit edit, compile, 1load,
and file-storage operations to be performed by The Pennsylvania State
University’s central computer system via a dial-up phone link. Because
the average hologram contains over 16,000 data values (128 x 128 grid
locations) and the phone link is relatively slow (1200 baud), the phone
link was not used to transmit the recorded data. Instead, an old
9-track digital tape drive was acquired, repaired, and interfaced to the
microprocessor for data storage.

When recording holograms, the acoustic pressure is sampled over an
entire rectangular area, approximately 73 x 88 inches in dimension, by
the microphone scanning system shown in Figure 6.3. Four small electret
microphones (Knowles BT-1759) move up and down on carriages that are
attached to vertical rods via slide bearings and are interconnected via
a cable and pulley arrangement. (Four additional microphones can be
attached to the other ends of the carriage assemblies to record field
data originating on the other side of the scanner.) In addition, the
entire assembly moves horizontally on tracks on the floor. Both the
vertical and horizontal motion are precisely driven, with proper

acceleration and deceleration, by stepper motors under the control of
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the microprocessor. Four microphones are used instead of one for the
simple purpose of reducing the required scanning time by a factor ot 4.
Note that this particular scanning system has evolved through several
modifications of previous designs, and it has several faults that should
be corrected in any new designs. In particular, the wuneven motion
delivered by the vertical-axis stepper motor induces a severe vibration
into the cable used in the drive system. Also, a structure with fewer
or smaller support members that can distcert the acoustic field would be
desirable, but the focusing effect of the reconstruction process helps
to eliminate spurious reflections from the scanner.

The microphone signals are preamplified, filtered, and then passed
to a special amplitude/phase detection subsystem. The latter subsystem
deserves special attention because it provides the capability to operate
with pulses. A block diagram of 1its major functional elements is
presented in Figure 6.4. In operation, the reference signal (which is
continuous, not pulsed) is squared off at its zero crossings and passed
to a phase-locked loop circuit acting as a frequency multiplier. This
circuit creates a signal that corresponds to the reference signal
multiplied by 720 (or any other desired count); the multiplied signal
is, 1in turn, digitally counted in synchronization with the reference
signal. As a result, a running tally of the phase delay from the start
of the reference cycle is available in half-degree increments. Sometime
after a cycle of the reference signal begins, the wunknown signal will
begin its next cycle (defined as a zero crossing of positive slope).
This point is precisely detected by a trigger circuit; and the running

phase tally at that point is saved in a holding register, providing a
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digital count of the phase delay in the range of 0 - 720 half-degrees.
Simultaneously, a separate counter, which is set to count down from 180,
is started. When this second counter reaches zero, the sinusoid is at
its maximum value (90°); and this peak value is read through an analog-
to-digital convertor into another holding register. Both the amplitude
and phase of the unknown are now available in digital form.

decause no commercial device could be found, this very fast
amplitude/phase detector was designed and constructed as part of this
thesis effort. The actual prototype contains four sets of trigger
circuits and holding registers so that all four microphone signals from
the scanner can be processed simultaneously. The detection procedure
takes a maximum of 2-1/4 cycles of the input wave, plus about 50
microseconds (including initial synchronization with the reference
signal). The detection device operates with half-degree resolution over
a frequency range of about 1 - 20 kHz. Because of the sophisticated
nature of the device’s operation and the variable quality of input
signals, extensive error-checking circuitry was included to 1look for
missing- or wmultiple-phase detections, phase~locked-loop tracking
errors, etc.

The timing of the hologram recording process is handled by the
microprocessor program. This function includes generating a pulse (or
continuous wave) of preset length and starting the amplitude/phase
detection during a central portion of the desired echo from the
scatterer. The data values, which are normally recorded on a 128 x 128
grid, are trangsferred to a large IBM computer for numerical

reconstruction at any selected plane. The program for the

R e T L
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reconstruction task was developed by Cohen (1979), and it implements the
modified backward-propagation procedure [which attenuates high spatial
frequencies (see Section 6.1)] using fast-Fourier-transform algorithms.
The resulting grid of reconstruction values (also containing 128 x 128
elements) is analyzed interactively using a high-performance graphics
system (Adage AGT-30) at the The Pennsylvania State University’s
Computation Center. The graphics system and supporting software (also
developed as part of this project) allow a wuser to interactively
manipulate and analyze the pressure plotted as a three~dimensional
surface in a reconstructed plane. This capability proved extremely
valuable because of the large quantity of data in each reconstructicn
and because of the complex nature of many of the reconstructions. The
plots shown in the following section are all projected views of the
reconstructed~pressure surface that have been selected through

interactive analysis to emphasize individual points about the data.

6.3 Experimental Results

This section presents holographic reconstructions of the scattered

sound field near the surface of four basic bodies: a square baffle, a
sphere, a prolate spheroid, and a cone. The results are best described
as preliminary because they were selected primarily to test the
performance of the measurement technique. As a group, the experiments
have done a good job of bringing out many of the advantages and
limitations of the procedure. However, they have not provided as much
information about the nearfield of three-dimensional scatterers as had

been hoped. Note that all the reconstructions are plotted as three-
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dimensional surfaces in the object (scatterer) plane, with height above
the plane representing the reconstructed pressure amplitude. All data

points are normalized to the peak value in each plot.

6.3.1 Backscattering at a Flat Baffle

The previous holographic work at tﬁis laboratory (Graham, 1969;
Watson, 1971) examined the sound field radiated by plates driven into
continuous mechanical vibration. Thus, the earliest scattering
experiments were performed using flat baffles as scatterers and
continuously driven sources. For example, Figure 6.5 1is a
reconstruction of a l2-inch square baffle positioned parallel to the
microphone scanner at a separation distance of 77-5/8 inches. The
incident wave 1is produced by a horn tweeter that 1s directed at the
baf fle fror just in front of the scanner. The outline of the baffle is
distinguishable in the upper-right portion of the figure, but there is
also a fairly strong return just below and to the left of the baffle.

Because there were no other objects near the baffle, the extra
returns indicated in Figure 6.5 were presumed to be an out-of-focus
contribution from a table about 3 feet behind the baffle. In order to
test this hypothesis, the baffle experiment was repeated using a pulsed
source and the shortest allowable pulse length. The resulting
reconstruction is shown in Figure 6.6. In this case, the field on the
baffle is the only visible component. Note that the form of this field
is different from that in the previous reconstruction, indicating that
the field in the previous example had been distorted by out-of-focus

terms. Holography is known to have very good directivity in the plane
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Figure 6.5 Reconstruction of a l2-inch square baffle at 8 kHz taken
with a continuous scurce.




Figure 6.6 Reconstruction of a l2-inch square baffle at 8 kHz taken
with a pulsed source.
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parallel to the hologram (as is evident in the figure), and it also
exhibits focusing effects along the z axis (line perpendicular to the
hologram). However, the resolution provided in the z axis is apparently
very poor. For this reason, all future holograms were taken using a
pulsed source.

The reconstruction of Figure 6.6 indicates that the scattered field
on a baffle i{s more prominent near the edges. This result is very
similar to the data obtained from vibrating plates, but it was not
expected in this case. Consequently, a thorough checkout of the
recording procedure was carried out immediately after the results were
discovered. This checkout showed that a random background was being
created in the hologram by the measurement system. Whenever the
detection device had tried three times unsuccessfully to obtain a valid
phase reading on a low-level signal, the system accepted the last
erroneous reading. After modifying the electronics to force a zero
amplitude in this situation, the experiment was repeated to obtain the
result shown in Figure 6.7. The reconstruction now shows a fairly
uniform pressure distribution over the surface of the baffle. The
latter result is the correct one; in the previous result, random phase
errors were introducing spurious high-spatial-frequency components that
accentuated the reconstructed field at the edges of the baffle. In
contrast, other studies showed that amplitude errors in the hologram
caused by calibration problems have little effect on the

reconstructions.
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6.3.2 Backscattering at Spheres of Different Sizes

The next series of tests examined the scattering from two spheres
with diameters of 2-1/4 and 6 inches that were suspended with their
centers in the same object plane. A reconstruction of the surface
scattering at 17 kHz is shown in Figure 6.8. The reconstruction shows a
much broader return for the larger sphere, indicating that the surface
field is fairly uniform over most of the illuminated area (similar to
the baffle discussed in the previous section). Because the relative
amplitudes of the data in the figure are distorted by the viewing angle
of the plot, a side view of the same reconstruction is shown in Figure
6.9. The relative ratio between the two peaks in the reconstruction is
about 2.1, while the expected ratio between the backscattering by the
two spheres is about 2.7. However, if a more accurate estimate is made
by reconstructing each sphere at its leading surface (specular point),
the amplitude ratio of the reconstructed components from the spheres
matches the expected result very closely. This agreement gives one some
confidence that the amplitudes, at least among different portions of the
same reconstruction, are accurate. (This 1s not true of many
holographic techniques.)

As a further test of the focusing effect of the imaging technique,
the smaller sphere used in the previous experiment was moved into
another object plane about 13 inches behind the first object plane.
Figure 6.10 shows the resulting reconstruction in the plane of the
closest sphere, and Figure 6.11 shows the result in the plane of the
furthest sphere. In both cases, a well-defined component is observed at

the location of the sphere that is in the corresponding reconstruction
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Figure 6.8 Reconstruction at 17 kHz of two spheres of different
diameters in the same object plane.
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Figure 6.9 Reconstruction (side view) at 17 kHz of
different diameters in the same object plane.
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Figure 6.10 Reconstruction (side view) at 17 kHz of two unequal spheres
in different object planes, as viewed in the plane of the

closegt sphere.
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Reconstruction (side view) at 17 kHz of two unequal spheres

Figure 6.11

in different planes, as viewed in the plane of the furthest

sphere.
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plane. In addition, an out-of-focus component from the other sphere is
noted in Figure 6.11. The out-of-focus component in Figure 6.10 is
apparently too small to be visible. Note that, in comparing the latter
two figures, one must remember that the data are rescaled to the local
maXimum in each plot. Thus, the peak values in the two plots actually
differ by an absolute ratio of 3.5. A comparison of the reconstructions
of the larger sphere in the two figures gives one an idea of the meaning

of the term "

out of focus." When this condition exists, the
reconstructed field is lower in amplitude, broader in area, and has no
prominent peaks. When separated from other returns, this out-of-focus
component is easily found by visual inspection; and Powers and Mueller

(1974) 1indicate that the slope of the field can be used as a numerical

indicator of the degree of focus achieved in some cases.

6.3.3 Backscattering at a Prolate Spheroid

Having developed some intuitive feel for the results of a wavefront
reconstruction, attention next turned to extended, three-dimensional
scatterers. The first model examined was the 42-inch-long, 7:1 prolate
spheroid. Figure 6.12 shows the reconstruction obtained for broadside
incidence in the plane of the leading side. Just as was noted in both
of the previous sections, the field on the spheroid is evenly
distributed over most of the surface, although somewhat lcwer values are
noted near the ends. The corresponding reconstruction for axial
incidence is shown in Figure 6.13 (viewed in the plane of the tip). In
this case, the reconstructed field is broader than the physical

dimensions of the tip, which may indicate the size of the surface field
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Figure 6.13 Reconstruction at 17 kHz from a 7:] prolate spheroid at
axial incidence, viewed in the plane of the tip.
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or may indicate out-of-focus contributions from points further down the
length of the wmodel. For the axial incidence case, a reconstruction
that was made at the center of the spheroid is shown in Figure 6.14. In
this result, there are no individual components evident above the
general background level. The final experiment in this series involved
a small cylinder that was centered on top of the axially directed
spheroid. In the resulting reconstructions, a cylinder contribution is
observed in the center plane, and some additional contributions to the

background level at the tip are also noted.

6.3.4 Backscattering at a Finite Cone

The other three-dimensional scatterer examined was the 18-inch cone
model (described in Section 3.3), with either the usual pointed tip or a
spherical cap of 2-inch radius. The reconstruction of the pointed-tip
cone was examined both at the tip (Figure 6.15) and at the rear edge
(Figure 6.16). The component indicated at the rear edge is a circle
along the outline of the base, as might be expected. This
reconstruction also has a peak in the center, which may be an out-of-
focus component. At the tip, a reasonably well-defined component is
also evident. However, because this tip component is almost as large as
the rear component in absolute magnitude, it must be an out-of-focus
term. (Data of Section 5.4.2 show that the tip return is much smaller
than the rear-edge return.) This last result shows that reconstructions
must be interpreted very carefully. Turning to the spherically capped
cone, the reconstructions at the cap and at the rear edge are shown in

Figures 6.17 and 6.18, respectively. A distinct specular return is
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Figure 6.15

Recongtruction at 17 kHz from a finite cone,
plane of the tip.

380

viewed in the




381

—
i
18in
’ e4é~in
v
L |

/\
: R R/
A ~ - //"\\ XN
N\ P . y\//\ /\I/Y
~ a)
VAN
- - /:/_\ -
-
S,

Figure 6.16 Reconstruction at 17 kHz from a finite cone, viewed in the
plane of the rear edge.
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Figure 6.17 Reconstruction at 17 kHz from a spherically
viewed in the plane of the tip.
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Figure 6.18 Reconstruction at 17 kHz from a spherically
viewed in the plane of the rear edge.
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noted at the cap. At the rear edge, however, the expected ring-shaped

return is not observed. One must conclude that the rear-edge (ring)

return is being masked by an out-of-focus component from the cap.

6.4 General Conclusions About the Technique

The results described in Section 6.3 have pointed out both good and
bad features of the technique of wavefront reconstruction. There is at
least some evidence that accurate quantitative values of the equivalent
surface fields on a scatterer can be obtained. However, the lack of
resolution in the z direction is a serious problem for studies of three-~
dimensional scatterers. It is possible that either a more accurate
pulse system or the addition of several frequencies can aid in the
solution of this problem. Only more work will tell. There are also
unresolved questions about the interpretation of the equivalent surface
fields. However, when the difficulties encountered in trying to measure
surface fields by traditional sensing methods are considered, the

imaging technique shows enough merit to justify more studies.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

The previous chapters have summarized in detail the individual
results of a fairly extensive series of scattering experiments. The
primary purpose of these experiments has been to examine the physical
diffraction mechanisms that are important 1in modern diffraction
theories. In addition, both theoretical and experimental analyses of
the Freedman theory of echo formation have been included to supplement
the sparse amount of information in the literature about this theory.
Because of the large amount of data presented, it is easy to lose sight
of the many similarities and relationships among the data from various
experiments. This is unfortunate because the results are probably most
valuable when taken as a whole in order to develop one’s physical
intuition. Consequeﬁtly, this chapter places an overall perspective on
the results of the study by describing the major conclusions derived by
th2 author. Wherever possible, brief references to other sections of
this thesis are included to direct the reader to additional pertinent
information. Note, however, that it will generally be necessary to
refer to several different experiments to evaluate all the information
relating to any individual conclusion.

The backscattering from a prolate spheroid appears to be governed
almost exclusively by specular effects (see Section 4.2). The
directivity results of the spheroid match simple geometric predictions
very closely, even thou,a the specular points on the spheroid for much

of the angular range fall near a tip of relatively small radius (Section
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4.2.4). There is evidence, though, that these results are very
sensitive to small changes in the model’s shape that are caused either
by surface anomalies (Section 4.3.1) or small obstructions on the
surface (Sections 4.3.2 and 4.4.1). Thus, it appears that predictions
based only on specular effects will work reasonably well (although the
predicted amplitudes may be a little too 1large); this is true even for
bodies whose radii of curvature are relatively small in relation to a
wavelength, if the scattering surface 1is swmoothly curved. This
conclusion is reinforced by results from modified cones having spherical
surfaces at the tip (Section 5.4.2). Although they possess only a small
fraction of the total surface area of a sphere at their tip, the cones
with smoothly joined spherical caps exhibit very uniform scattering
patterns that are similar in both directivity and absolute level to
those of a sphere. In contrast, the cone with a hemispherical cap,
which possesses a much larger spherical area, exhibits distinct bulges
in both its backscattered and bistatic directivity results (Section
5.4.4), This 1last result may be attributed to the more abrupt
transition between the sphere and cone outlines that is present with the
hemispherical cap. Note that the relatively small spacing between the
models and the transducers in the experiments may have exaggerated all
the relationships described in this paragraph.

The curved symmetry of the thin prolate spheroid also points out
the fundamental differences between the scattering from flat and
slightly curved bodies. Although the 1long dimension of the thin
spheroid is almost flat (at least near the center), the body continues

to behave more like a sphere than a cylinder. For example, at broadside
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incidence, the bistatic scattering pattern for the spheroid 1is very
broad in the plane of the spheroid’s wmajor axis (Section 4.3), while a
cylinder of much smaller dimensions exhibits prominent lobes (similar to
the backscatter data of Section 5.3). This result is certainly related
to the fact that the surface of the cylinder is terminated at both ends
by abrupt edges. However, the strong geometrical similarity between the
sphere and spheroid (described in Section 4.1) should be noted as an
additional consideration. In fact, the Gaussian curvature of the
spheroid at 1its specular point for broadside incidence is exactly the
same as the Gaussian curvature of a sphere with the same major radius;
and this relation is always true despite the large differences in the
principal radii of curvature between a thin spheroid and an equivalent
sphere. As a corollary to the conclusion about bistatic scattering, the
backscatter from the thin spheroid is also relatively smooth (Section
4.2.2). 1In this case, the specular points shift rapidly to the sphere-
like tip region as the body is rotated from broadside incidence to axial
incidence. Because the radii of curvature at the specular point change
rapidly as the incidence angle is varied, it is difficult to describe
the backscattering by a thin spheroid in terms of a characteristic
dimension (see Section 4.2.4).

Several of the smooth-body studies produced evidence of surface
fields, but the properties of the fields differ from those normally
attributed to so-called creeping waves. A component that closely
matches the Franz-type creeping waves (see Deppermann & Franz, 1954) is
observed for the simple case of a sphere (Section 4.6.1), but this

return depends only loosely on the shape of the model’s surface. For
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example, a band placed around the surface of a sphere to block the
creeping-wave component has no effect unless the band passes through the
antipole (focus point) on the rear side of the sphere (Section 4.6.2).
In addition, the amplitude of the creeping-wave component is increased
at all measured scattering angles by cutting a flat surface into one
side of the sphere (Section 4.6.3). This increase is observed even when
the flattened portion 1is oriented toward the transducers, an orientation
in which the assumed path of the creeping waves around the rear of the
body is unchanged from that on the unmodified sphere. These results are
best explained as a continuous manifestation of the diffracticn model
that postulates a diffusion of sound energy into the shadow at a shadow
boundary (described in Malyughinets, 1959).

Other surface effects, possibly related to the creeping waves, were
observed with small obstructions on the prolate spheroid. For example,
the scattering by small cylinders is enhanced when the c¢ylinders are
placed on the spheroid surface (Section 4.4.2). This baffle-like effect
appears to be localized to an area located no more than one wavelength
from the surface; and it is formed (in fact, is most prominent) at the
illuminated tip of the spheroid, which 1is different than the formation
point postulated for creeping waves. Although this second surface
phenomenon exhibits certain properties only at axial incidence, the
basic baffle effect 1is evident for incidence angles on the spheroid as
large as 50° from axial incidence (Section 4.4.3).

The studies of edges on rectangular baffles led to two major
conclusions. First, the shape of an edge (i.e., flat or round) must be

considered in scattering predictions, even when the thickness of the
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edge is no more than A/4. A comparison of backscattering by rounded and
by square edges shows distinct differences for edges of this small
dimension (Section 5.2). In addition, there is evidence that the
angular distribution of the field scattered by a small but finite edge
is very directive (Section 5.1.1). The second major conclusion relates
to the effect of surface absorption on a field propagating at the
grazing angle. The results show that a significant attenuation of the
grazing field is observed. This attenuation is present not only near
the baffle but out to a distance of several wavelengths when the field
is generated by edge diffraction (i.e., on the shadowed side of a
baffle, as in Section 5.1.2). A surprisingly large attenuation of the
grazing field is also observed when the source field is incident at the
grazing angle (Section 5.1.2). Thus, there is evidence that surface
fields on fairly long bodies can be effectively attenuated by a small
amount of surface absorption.

The most important intuitive conclusion drawn from the studies of
cone models is the importance of scattering from edges that represent a
discontinuity in the cross section of a surface. The prominence of the
rear-edge contribution from a finite cone is well known. However, the
results of this study show that the backscattering by a similar surface
discontinuity of 1less than 104 of the wavelength (at the points where
the removable caps attach to the cone model) has an amplitude within a
few decibels of that from the rear edge (Section 5.4.1). Thus, the
existence of a surface discontinuity appears to be more important as a
determinant of scattering levels than is the actual size of the

discontinuity. As a corollary to this conclusion, the scattering from




-

390
an abrupt edge can be significantly reduced (10 - 15 dB) by making the
edge discontinuous only in slope, as was demonstrated by smoothing the
surface of the cone model at the cap joint (Section 5.4.1) and by
attaching a hemisphere to the rear of the come (Section 5.4.2). Some
additional improvement is also gained by reducing the discontinuity at
the edge from first to second order (i.e., using the spherical cone
termination instead of the hemispherical termination), but the change in
scattering level that occurs in this case 1is not as great as the change
observed in going from the zero-order to the first—order discontinuity
(Section 5.4.2).

The various types of edges that were examined on the cone models
also exhibit interesting differences in their directivities for both
backscattering and bistatic scattering. First, when the cone is
illuminated from the front, the directivity of the backscatter from the
rear edge exhibits the distinctly lobed pattern that is characteristic
of the interference between two similar returns (at least for angles
where returns from both edges are visible, as 1in Section 5.4.3).
However, when the cone is illuminated from the rear (i.e., onto the
circular base), only a single broad peak is noted (Section 5.4.3). In
the latter case, there is a strong specular contribution from the disk
itself that dominates any edge contributions for angles near axial
incidence. Then, as the cone is rotated, the specular component
decreases in amplitude and appears to split into returns from each edge;
but the two edge returns are separated enough in time that they do not
interfere. Second, when the rear edge of the cone is modified with

either the hemispherical or spherical termination, the shape of the

3
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directivity changes in a manner that reduces the difference between the
central peak and the sidelobes (Section 5.4.5). As a consequence, the
reduction in scattering associated with the change in the order of
discontinuity at the edge (see Section 5.4.2) is observed only for axial
incidence. Note that the directivity of the bistatic scattering for the
rear edge of the cone-sphere is essentially uniform in level (it does
oscillate slightly)--in stark contrast to that from the normal cone,
which exhibits a large central peak (see Section 5.4.5).

At the current stage of development, it is difficult to draw any
firm conclusions from the experimental results obtained by wavefront
reconstruction. It 1is tempting, for example, to compare the
distribution of the surface fields on the spheroid (Section 6.3.3) and
the square baffle (Section 6.3.1) and then to look for a result that
explains the differences observed between their farfield scattering
patterns. However, sufficient understanding of the method’s details has
not been developed (see Section 6.4). The wavefront-reconstruction
technique, in general, looks very promising 1f the problems of
resolution in the z axis can be adequately resolved.

Finally, a few conclusions can be drawn about the Freedman theory.
First, the theoretical analysis (Section 2.2) shows that it is a variant
solution of physical optics rather than an asymptotic theory as
described by Freedman (1962a). Second, just as with physical optics,
the Freedman method appears to provide good predictions (at least at
large ranges) for two-dimensional objects, such as rectangular edges, at
angles not too far from the surface normal (Section 5.2). However, for

three~-dimensional objects, where more than one surface may contribute to
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the scattering, serious problems are noted. The cylinder examples of
Section 5.3 indicate that the problems found in the theory for three-
dimensional scatterers are caused by the sensitivity of the vector sum
of multiple scattering components to small errors in the predictions of
the individual components. Third, problems with the Freedman theory are
also noted at abrupt surface discontinuities where the assumptions of
the theory are questionable (Section 5.4.2). For example, the
prediction for the backscattering by the rear edge of a cone exhibits
the wrong frequency dependence. In addition, the theory fails to
account for the nature of the edge at the cone’s shadow boundary, which
the experimental results show to be very important. Fourth, there is
evidence that the Freedman predictions for first- and second-order edges
and tips on the surface of a cone are relatively accurate, but the
results are inconclusive on this point because of the extreme
sensitivity of the data to minor imperfections in the model (see Section
5.4.1) and/or because of marginal signal-to-noise ratios in the
experiments.

From a qualitative point of view, the Freedman predictions are
generally very good; that is, the backscattered returns generally do
originate where predicted, even on three-dimensional bodies. The only
major problem that has been encountered occurs at the shadow boundary
(final range point of the body). The Freedman theory always predicts a
scattering component from this boundary, but none is experimentally
observed if the surface of the scatterer is smooth at the boundary (such
as occurs, for example, with the spheroid or the cone-sphere). It is

possible to argue that the quantitative successes of the Freedman theory
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are tied very strongly to its ability to predict the locations of
scattering components. Because the predicted locations of these
components are accurate, their phases are also correct; and holography
studies (for example, Watscn, 1971) have shown that the phase carries
the dominant information about the basic form of the scattering pattern,
such as the locations of maxima and nminima.

When examined in detail, the previous conclusions are nmerely an
indication of the complexity of the scattering process. There is
evidence that small variations of simple scatterers can significantly
affect the scattering results. Thus, from a practical point of view,
one must be very careful 1in using simple examples to model related
shapes, and realistic expectations on the accuracy of the‘results should
be assumed. On the other hand, there are enough similarities in the
results to postulate that adequate predictions can be made if sufficient
insight into the physical mechanisms can be developed and formulated
into prediction methods. This study represents only a small
contribution toward that goal. It is hoped, however, that the effort
has demonstrated the wusefulness of exploratory experimentation as a
means for both understanding the physical phenomena and helping to
direct the development of better techniques for predicting the

scattering from three~dimensional bodies.
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APPENDIX A

DERIVATION OF THE KIRCHOFF SCATTERING INTEGRAL

For purposes of notation in the following derivation, an underscore
represents a vector (E); the same letter symbol without an underscore
represents the vector’s magnitude (r = |£|); and a caret represents the
corresponding unit vector (r = r/rc).

Let p(r’) be a solution of the Helmholtz equation (Morse &
Feshbach, 1953, pp. 804-807) at a field point E' in a region containing

the source distribution f(r’):

@+ HpE = £ . (a.1)
Also, let G(r,r’) be a solution of the Helmholtz equation with a unit

point source located at r:

@ + 16,y = 82’ - . (a.2)

The function 6(5'-5) is the standard delta function, and the 2 operator
is applied to the primed coordinate system. The function G(E,E') is
frequently called the free-space Green’'s function, and it 1is given as
(Skudrzyk, 1971, pp. 641-642)

G(r,r') = HREIED) (A.3)

where R=r -r’ and R = |’ - r}|. 1f Equation A.l is multiplied by

G(r,r’), Equation A.2 is multiplied by p(i'), and the results of these
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two operations are subtracted, one obtains

P(eNV76(E, ) - 6,7 = Pz’ - ©) - Gz

Since the delta function is only defined in terms of an integration,

this last equation is now integrated over a volume V that contains the
source distribution £(r’) (i.e., a region where Equations A.l and A.2

are valid) to obtain

( 2 . 2.,
J” (p(x")V°G(x,r") - G(x,r")7 p(r'))dV
v

=p(p) - jjj Gz, f(x")dv . (A.5)
v

Finally, Green’s theorem (Morse & Feshbach, 1953, pp. 803-804) 1is used
to convert the volume integral into the corresponding surface integral.
Letting S represent the closed surface bounding the volume V and n

represent the outward unit normal vector, one obtains
p(D) = U {p("¥6(z,r") - G(z,r")Tp(r")) + nds

+J” Glr,r")E(x)dv . 4.6)"

This equation relates the pressure at a field point to both the pressure
and its normal de.ivative on the enclosing surface S and also the

pressure due to the specified source distribution. The point tr must be
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4do
inside S in order for the integration of the delta function in Equation
A.4 to yield a nonzero value. Note that Equation A.6 takes the form of
an integral equation with the pressure appearing on both sides of the
equal sign. This fact is very important when sources of energy outside
the surface of integration must be considered.

Equation A.6 can now be applied to the case of interest, that of a
rigid body subjected to an incident field from a single point source at
location 52 (Figure A.l). The surface S 1is chosen as the sum of the
scatterer surface S0 and the surface of a sphere of infinite radius S _,

and the integration volume thus includes all of space outside the

scatterer. The source distribution f(r) is that of a point source of

strength P at I which is radiating into a space angle of 4m:
f(r') = 4nPs(x' - 52) . (A.7)

On the surface of the scatterer, the normal vel.ocity 1is zero (Neumann

boundary condition), and thus

f+-9p=0 on § . (A.8)

Using Equation A.8 to simplify the integral over the scatterer surface

(does not apply for S,) and substituting Equation A.7 for the source
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distribution, one obtains
p(r) = j} (p(x")96(x,x") - G(r,z")7p(z")) - ndS
SQ
( P exp(-ikjr, - )
+ (J (p(r")%6(r,£")) - ﬁdS0 + =
J -t T lr, -t
- S -2
0

(A.9)

It is now convenient to decompose the field pressure into incident

and scattered components denoted as
p(x) =p; (@) + @, (A.10)

and then to examine the form of each of these components. Since all

energy comes from the point source at r

2 the incicent field is given by

exp(-ik|r, - r|)
py(x) = . (A.11)

Note that this corresponds exactly to the last term on the right side of

Equation A.9, and thus that equation reduces to

p (x) = ” (P(x")T6(x,r") - G(z,r")¥p(r")) - ndS_
+” (p(2")%6(z,c") - ﬁdso . (A.12)

Although only the scattered pressure remains on the left side of the

27
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equation, the total pressure still appears under both integral signs on
the right side. At large distances from the scatterer, the scattered
field will assume the characteristics of spherical divergence, and thus

can be represented as
P .
Ps(g) - (;)f(a,Q)exp(-lkr) , (A.13)

where £(2,$) is sometimes called the form function. Note that this
field is similar to the incident field in dependence on range.

Turning now to the integral in Equation A.l12 over §,, it is first
necessary to investigate the asymptotic forms of the functions G(E,E’)

and dS,. In the limit as r’+, then R+r’., In addition,

w6(e,r") - Redlemp(ikn) /anR],

G (Y - Ep)exp(-ikp)
R

+

R |, -ik .
(z;)(—i—)GXP(-lkR)

¥

~-ikRG(r,r') . (A.14)

Because S is a sphere, one can say that

,
ds_ > R sin 8deds = R°da . (A.15)




Substituting these asymptotic relations into the integral, one obtains

1
1=
=}

~ {G(r,£")To(x") + ikRp(r)G(x,r’)} - dRda

S

=

}’ (-RG(z,r")}R{7Tp(x") + r'2(z")} -+ ada . (a.16)
S

(
"

In the asymptotic limit, the function R G(r,r’) is bounded. Thus, I,
will tend to zero if

Lim R{Tp(r') +r'p(z")} -a -0 . (A.17)
This condition is known as the Sommerfeld radiation condition (Skudrzyk,
1971, PP. 493-494), and it must be satisfied in order for this
derivation to be valid. Because both the incident and scattered
components of the pressure vary as 1/R, it is reasonable to assume that
the radiation condition does hold if even a small amount of damping is

included. Having shown that the integral over §S_ vanishes, Equatiom

A.12 is reduced to

PS(E) = H (p(x")¥G(r,r")) - ﬁdso . (a.18)

So

Thus, for a rigid body, the scattered field is related solely to the
total pressure evaluated on the surface of the scatterer. If sources of
energy outside the surface of integration had been allowed in the

previous derivation, the result would have been identical to Equation
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A.l18. In that case, the integral over Ss, would have exactly reproduced
the incident field from the external sources, and this term would have
canceled with the incident component on the left side of Equation A.9.
Equation A.18 is actually a specific form of the Helmholtz-Huyghens
radiation integral (Skudrzyk, 1971, pp.491-496), with no approximations
on the field having been made. To evaluate this relation for the case
of interest, the Kirchhoff assumptions must be applied. Thus, it will
be assumed (1) that every point on the illuminated portion of the
scatterer surface SI acts as 1if it were a plane in an infinite rigid
baffle and (2) that the pressure on the shadowed portions of the
scatterer surface 1is identically zero. The surface pressure can be
obtained by examining the scattering from a rigid plane. Figure A.2
illustrates the case of an incident wave of form pi(E) = P exp(-iker)
reflected from a plane boundary in a form pt(s) = R exp(-iEfoE). At the
boundary, the total pressure given by p(r) = pi(E) + pr(E) is subject to

the Neumann boundary condition of Equation A.8. Thus,
-ik « nP exp(-ik *« r) - ik' - aR exp(-ik' + r) =0 . (A.19)

In order to examine the relationships determined by Equation A.19, it is
helpful to remove the vector representations by assuming that the point
of reflection is at the origin of a rectangular coordinate system.

Equation A.l9 becomes (see Figure A.2)

-ik cog 0 P exp(-ikx cos & - iky sin 8)
-ik' cos 9'R exp(-ik'x cos 8' - ik'y sin 8') = 0

(A.20)

© pnm e = e

-
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Figure A.2 Scattering of a plane wave at a plane boundary.
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It is clear that k = k' because the frequency of the wave does not
change on reflection. In addition, because Equation A.20 must hold at
the boundary (x = 0) for all values of y, one finds that 3 = 3°.  This
observation, when applied to Equation A.20, leads further to the fact
that R = P. The incident and reflected rays are thus identical in form

and

p(x) = pi(r) + pr(g)

= P exp(-ik - r) + P exp(-ik ° r)

= Zpi(g) . (A.2D)

For the case presented in Chapter 2, that of backscattering from a rigid

body, the incident pressure is

pi(:') -E_E_XM)_ . (A.22)

rl

The scalar aotation can now be used because the source is a point source
at the origin of the coordinate system. For backscattering, the
receiver is also at the source location, making r = 0. Substituting

this information into Equation A.18, one obtains

2P exp(-ikr')y r=ikr' exp(-ikr') -
p (0) = ” (2Esxp(oikr )y ( s ) - nds

51

(A.23)

If ¢ is taken as the angle between the incident radius vector r’ and the




surface normal n, the result finally becomes

-i2kP ~-i2kr’
p (0) = (L2 H (B ‘rfz L)) cos 4ds;

St

- ” (XR(AZKE Dy oog yas, (A.24)
r'

51

Note that this is the same equation as that obtained by more heuristic

means in Section 2.1 (Equation 2.6).




APPENDIX B

RECEIVER-GATE MODULE

The primary function of the receiver-gate module is to measure the
highest peak of all received signals within a preset time window and to
hold that value until another measurement can be made. The slowly
varying output of this device is then wused to obtain a smooth plot of
any desired component that can be 1isolated within the window. The
actual unit designed for this project provides a useful dynamic range of
at least 40 dB over frequencies of 1 - 40 KkHz. Just as with any
commercial product, it must be used with caution to insure that the data
provided are what is actually desired.

Figure B.l is a schematic of the first two stages of the receiver-
gate module. The incoming signal is first amplified by a factor of 10
to bring it up to a level of about 5 volts. The input preamplifier
stage 1s also designed to blank any signals that occur before the
measurement window in order to prevent strong incident pulses from
overdriving the following stages. The amplified signal is then passed
through an active, full-wave rectifier whose final stage includes a
small amount of signal averaging. The averaging is used to smooth out
any undesirable transients before they reach the peak detector. The
averaging time constant is set by substitution of the 450-picofarad
capacitor, and the symmetry of the rectifier is adjusted via the
5000-ohm potentiometer. Note that the HA-2535 operational amplifier is
an extremely fast device because it must swing a large voltage range at

twice the input frequency. This device can be replaced by a less

T
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expensive operational amplifier if the maximum (40 kHz) <frequency used
for this study is not required.

The rectified signal is passed to a peak detector (Figure 3..).
This stage 1is reset prior to the time window and then holds the peak
value attained until reset again. The peak voltage is converted to a
decibel scale by the 8048 temperature-compensated logarithmic convertor.
The frequency of the peak-detected signal is low enough to be accurately
tracked by this device. Finally, near the end of the time window, the
logarithmic peak value is sampled and held by the final stage until the
next time window.

The logic ecircuits that provide the timing signals are shown in
Figure B.3. There are three simple monostable multivibrators
implemented in CMOS logic and connected in series. The delay from the
initial sync pulse to the window, the width of the window, and the width
of the sampling time at the end of the window are all adjustable. A
separate monitor output, which can be used to observe the relation
between the three time settings and the received signai by means of an
oscilloscope, 1s also provided. Note that the feedback capacitors in
the multivibrators wmust be modified if times significantly different
from those used in this study are desired.

Finally, a list of the full identifiers of all semiconductor
components is shown 1In Table B.l. All the operational amplifiers are
operated at voltages of :15 volts. The CMOS logic is driven from the
same +15 volt power supply. Resistors can have a l/4-watt power rating.
Note that new components that could improve the performance of the

module and/or reduce its cost have become available since its design.
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Figure B.3 Schematic of the ¢timing elements of the receiver-gate
module.




Table B.l

List of Semiconductor Components
Used in the Receiver=-Gate Module

Signal Diode IN914

Zener Diode 1IN758A (10 volts)
Operational Amplifier uwA739
Operational Amplifier HA-2535
Operatiqnal Amplifier NES5S36T
Operational Amplifier LM308D
Analog Gate IHS5011PE

Log Amplifier 8048BC

CMOS NOR Gate CD400lA

CMOS NAND Gate CD40lla
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In particular, the operational amplifiers in most cases could be

replaced with bipolar-FET-type devices such as the LF356N.
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